Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sevin Turcan is active.

Publication


Featured researches published by Sevin Turcan.


Nature | 2012

IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype

Sevin Turcan; Daniel Rohle; Anuj Goenka; Logan A. Walsh; Fang Fang; Emrullah Yilmaz; Carl Campos; Armida W. M. Fabius; Chao Lu; Patrick S. Ward; Craig B. Thompson; Andrew Kaufman; Olga A. Guryanova; Ross L. Levine; Adriana Heguy; Agnes Viale; Luc G. T. Morris; Jason T. Huse; Ingo K. Mellinghoff; Timothy A. Chan

Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.


Nature | 2012

IDH mutation impairs histone demethylation and results in a block to cell differentiation

Chao Lu; Patrick S. Ward; Gurpreet S. Kapoor; D. Rohle; Sevin Turcan; Omar Abdel-Wahab; Christopher R. Edwards; Raya Khanin; Maria E. Figueroa; Ari Melnick; Kathryn E. Wellen; Donald M. O’Rourke; Shelley L. Berger; Timothy A. Chan; Ross L. Levine; Ingo K. Mellinghoff; Craig B. Thompson

Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from α-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.


Science | 2013

An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells

D. Rohle; Janeta Popovici-Muller; Nicolaos Palaskas; Sevin Turcan; Christian Grommes; Carl Campos; Jennifer Tsoi; Owen Clark; Barbara Oldrini; Evangelia Komisopoulou; Kaiko Kunii; Alicia Pedraza; Stefanie Schalm; Lee Silverman; Alexandra Miller; Fang Wang; Hua Yang; Yue Chen; Andrew Kernytsky; Marc K. Rosenblum; Wei Liu; Scott A. Biller; Shinsan M. Su; Cameron Brennan; Timothy A. Chan; Thomas G. Graeber; Katharine E. Yen; Ingo K. Mellinghoff

IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.


Nature Genetics | 2013

The mutational landscape of adenoid cystic carcinoma

Allen S. Ho; Kasthuri Kannan; David M Roy; Luc G. T. Morris; Ian Ganly; Nora Katabi; Deepa Ramaswami; Logan A. Walsh; Stephanie Eng; Jason T. Huse; Jianan Zhang; Igor Dolgalev; Kety Huberman; Adriana Heguy; Agnes Viale; Marija Drobnjak; Margaret Leversha; Christine E Rice; Bhuvanesh Singh; N. Gopalakrishna Iyer; C. René Leemans; Elisabeth Bloemena; Robert L. Ferris; Raja R. Seethala; Benjamin E. Gross; Yupu Liang; Rileen Sinha; Luke Peng; Benjamin J. Raphael; Sevin Turcan

Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary gland cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here we determined the ACC mutational landscape and report the exome or whole-genome sequences of 60 ACC tumor-normal pairs. These analyses identified a low exonic somatic mutation rate (0.31 non-silent events per megabase) and wide mutational diversity. Notably, we found mutations in genes encoding chromatin-state regulators, such as SMARCA2, CREBBP and KDM6A, suggesting that there is aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to the DNA damage response and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying the role of these aberrations as critical events in ACC. Lastly, we identified recurrent mutations in the FGF-IGF-PI3K pathway (30% of tumors) that might represent new avenues for therapy. Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC.


Science Translational Medicine | 2011

Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis

Fang Fang; Sevin Turcan; Andreas Rimner; Andrew Kaufman; Dilip Giri; Luc G. T. Morris; Ronglai Shen; Venkatraman E. Seshan; Qianxing Mo; Adriana Heguy; Stephen B. Baylin; Nita Ahuja; Agnes Viale; Joan Massagué; Larry Norton; Linda T. Vahdat; Mary Ellen Moynahan; Timothy A. Chan

Breast cancer methylomes contribute to metastatic potential, modulate the metastasis transcriptome, and predict disease outcome. Meditating on Breast Cancer People of diverse faiths and backgrounds have gained new mindsets when contemplating “Om” (or Aum)—a meditation symbol that represents the universe in its entirety. The concept of examining existence from a global perspective has begun to take hold in cancer research as well. Indeed, researchers have created their own “omes”: the genome, the transcriptome, the proteome. Here, Fang et al. examine the methylome of breast cancer and find a signature that may predict metastasis. The authors used genome-wide analysis to examine methylome signatures in breast cancers with various metastatic behaviors and found a signature that was associated with low metastatic risk and improved rates of survival. This breast CpG island methylator phenotype (B-CIMP) tracked with reduced metastasis independently of other breast cancer markers [such as estrogen receptor/progesterone receptor (ER/PR) and human epidermal growth factor receptor 2 (HER2) status] and was shared by multiple human malignancies, including glioma and colon cancer. However, altered methylation status may not just be a marker of metastasis: Methylation of B-CIMP signature genes correlated with transcriptional diversity among breast cancers with different prognoses. Thus, the B-CIMP phenotype may thus play a mechanistic role in metastatic risk, and future meditation on the methylome may improve breast cancer prognosis and therapy. Cancer-specific alterations in DNA methylation are hallmarks of human malignancies; however, the nature of the breast cancer epigenome and its effects on metastatic behavior remain obscure. To address this issue, we used genome-wide analysis to characterize the methylomes of breast cancers with diverse metastatic behavior. Groups of breast tumors were characterized by the presence or absence of coordinate hypermethylation at a large number of genes, demonstrating a breast CpG island methylator phenotype (B-CIMP). The B-CIMP provided a distinct epigenomic profile and was a strong determinant of metastatic potential. Specifically, the presence of the B-CIMP in tumors was associated with low metastatic risk and survival, and the absence of the B-CIMP was associated with high metastatic risk and death. B-CIMP loci were highly enriched for genes that make up the metastasis transcriptome. Methylation at B-CIMP genes accounted for much of the transcriptomal diversity between breast cancers of varying prognosis, indicating a fundamental epigenomic contribution to metastasis. Comparison of the loci affected by the B-CIMP with those affected by the hypermethylator phenotype in glioma and colon cancer revealed that the CIMP signature was shared by multiple human malignancies. Our data provide a unifying epigenomic framework linking breast cancers with varying outcome and transcriptomic changes underlying metastasis. These findings significantly enhance our understanding of breast cancer oncogenesis and aid the development of new prognostic biomarkers for this common malignancy.


Nature Medicine | 2013

BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1

Martje Tönjes; Sebastian Barbus; Yoon Jung Park; Wei Wang; Magdalena Schlotter; Anders M. Lindroth; Sabrina Pleier; Alfa H.C. Bai; Daniela Karra; Rosario M. Piro; Jörg Felsberg; Adele Addington; Dieter Lemke; Irene Weibrecht; Volker Hovestadt; Claudio G. Rolli; Benito Campos; Sevin Turcan; Dominik Sturm; Hendrik Witt; Timothy A. Chan; Christel Herold-Mende; Ralf Kemkemer; Rainer König; Kathrin V. Schmidt; William Edmund Hull; Stefan M. Pfister; Manfred Jugold; Susan M. Hutson; Christoph Plass

Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma.


Nature Genetics | 2014

Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins

Yongxing Gong; Travis I. Zack; Luc G. T. Morris; Kan Lin; Ellen Hukkelhoven; Radhika Raheja; I-Li Tan; Sevin Turcan; Selvaraju Veeriah; Shasha Meng; Agnes Viale; Steven E. Schumacher; Perry Palmedo; Rameen Beroukhim; Timothy A. Chan

Coordinate control of different classes of cyclins is fundamentally important for cell cycle regulation and tumor suppression, yet the underlying mechanisms are incompletely understood. Here we show that the PARK2 tumor suppressor mediates this coordination. The PARK2 E3 ubiquitin ligase coordinately controls the stability of both cyclin D and cyclin E. Analysis of approximately 5,000 tumor genomes shows that PARK2 is a very frequently deleted gene in human cancer and uncovers a striking pattern of mutual exclusivity between PARK2 deletion and amplification of CCND1, CCNE1 or CDK4—implicating these genes in a common pathway. Inactivation of PARK2 results in the accumulation of cyclin D and acceleration of cell cycle progression. Furthermore, PARK2 is a component of a new class of cullin-RING–containing ubiquitin ligases targeting both cyclin D and cyclin E for degradation. Thus, PARK2 regulates cyclin-CDK complexes, as does the CDK inhibitor p16, but acts as a master regulator of the stability of G1/S cyclins.


OncoTargets and Therapy | 2013

Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management

Allen S. Ho; Sevin Turcan; Timothy A. Chan

The emergence of epigenetic mechanisms as key regulators of gene expression has led to dramatic advances in understanding cancer biology. Driven by complex layers that include aberrant DNA methylation and histone modification, epigenetic aberrations have emerged as critical processes that disrupt cellular machinery and homeostasis. Recent discoveries have already translated into successful clinical trials and improved patient care, with several agents approved for hematologic disease and others undergoing study. As the field matures, substantial challenges persist that will require resolution. These include the need to decipher more fully the interplay between the epigenetic and genetic machinery, patient selection and improving treatment efficacy in solid tumors, and optimizing combination therapies to counteract chemoresistance and minimize adverse effects. Here, we review recent progress in epigenetic treatments and consider their implications for future cancer therapy.


Neuro-oncology | 2014

Transcriptional diversity of long-term glioblastoma survivors

Naamit K. Gerber; Anuj Goenka; Sevin Turcan; Marsha Reyngold; Vladimir Makarov; Kasthuri Kannan; Kathryn Beal; Antonio Omuro; Yoshiya Yamada; P.H. Gutin; Cameron Brennan; Jason T. Huse; Timothy A. Chan

BACKGROUND Glioblastoma (GBM) is a highly aggressive type of glioma with poor prognosis. However, a small number of patients live much longer than the median survival. A better understanding of these long-term survivors (LTSs) may provide important insight into the biology of GBM. METHODS We identified 7 patients with GBM, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), with survival >48 months. We characterized the transcriptome of each patient and determined rates of MGMT promoter methylation and IDH1 and IDH2 mutational status. We identified LTSs in 2 independent cohorts (The Cancer Genome Atlas [TCGA] and NCI Repository for Molecular Brain Neoplasia Data [REMBRANDT]) and analyzed the transcriptomal characteristics of these LTSs. RESULTS The median overall survival of our cohort was 62.5 months. LTSs were distributed between the proneural (n = 2), neural (n = 2), classical (n = 2), and mesenchymal (n = 1) subtypes. Similarly, LTS in the TCGA and REMBRANDT cohorts demonstrated diverse transcriptomal subclassification identities. The majority of the MSKCC LTSs (71%) were found to have methylation of the MGMT promoter. None of the patients had an IDH1 or IDH2 mutation, and IDH mutation occurred in a minority of the TCGA LTSs as well. A set of 60 genes was found to be differentially expressed in the MSKCC and TCGA LTSs. CONCLUSIONS While IDH mutant proneural tumors impart a better prognosis in the short-term, survival beyond 4 years does not require IDH mutation and is not dictated by a single transcriptional subclass. In contrast, MGMT methylation continues to have strong prognostic value for survival beyond 4 years. These findings have substantial impact for understanding GBM biology and progression.


Oncogene | 2015

RECK Controls Breast Cancer Metastasis by Modulating a Convergent, STAT3-dependent Neoangiogenic Switch

Logan A. Walsh; David M. Roy; Marsha Reyngold; Dilip Giri; Alexandra Snyder; Sevin Turcan; Chaitanya R. Badwe; Jaclyn Lyman; Jacqueline Bromberg; Tari A. King; Timothy A. Chan

Metastasis is the primary cause of cancer-related death in oncology patients. A comprehensive understanding of the molecular mechanisms that cancer cells usurp to promote metastatic dissemination is critical for the development and implementation of novel diagnostic and treatment strategies. Here we show that the membrane protein RECK (Reversion-inducing cysteine-rich protein with kazal motifs) controls breast cancer metastasis by modulating a novel, non-canonical and convergent signal transducer and activator of transcription factor 3 (STAT3)-dependent angiogenic program. Neoangiogenesis and STAT3 hyperactivation are known to be fundamentally important for metastasis, but the root molecular initiators of these phenotypes are poorly understood. Our study identifies loss of RECK as a critical and previously unknown trigger for these hallmarks of metastasis. Using multiple xenograft mouse models, we comprehensively show that RECK inhibits metastasis, concomitant with a suppression of neoangiogenesis at secondary sites, while leaving primary tumor growth unaffected. Further, with functional genomics and biochemical dissection we demonstrate that RECK controls this angiogenic rheostat through a novel complex with cell surface receptors to regulate STAT3 activation, cytokine signaling, and the induction of both vascular endothelial growth factor and urokinase plasminogen activator. In accordance with these findings, inhibition of STAT3 can rescue this phenotype both in vitro and in vivo. Taken together, our study uncovers, for the first time, that RECK is a novel regulator of multiple well-established and robust mediators of metastasis; thus, RECK is a keystone protein that may be exploited in a clinical setting to target metastatic disease from multiple angles.

Collaboration


Dive into the Sevin Turcan's collaboration.

Top Co-Authors

Avatar

Timothy A. Chan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jason T. Huse

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Agnes Viale

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Armida W. M. Fabius

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Logan A. Walsh

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Luc G. T. Morris

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron Brennan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dilip Giri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge