Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sevinc Ercan is active.

Publication


Featured researches published by Sevinc Ercan.


Genome Research | 2011

Broad chromosomal domains of histone modification patterns in C. elegans

Tao Liu; Andreas Rechtsteiner; Thea A. Egelhofer; Anne Vielle; Isabel Latorre; Ming Sin Cheung; Sevinc Ercan; Kohta Ikegami; M. Jensen; Paulina Kolasinska-Zwierz; Heidi Rosenbaum; Hyunjin Shin; S. Taing; T. Takasaki; A. Leonardo Iniguez; Arshad Desai; Abby F. Dernburg; Hiroshi Kimura; Jason D. Lieb; Julie Ahringer; Susan Strome; X. Shirley Liu

Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development.


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


PLOS Genetics | 2010

The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny.

Andreas Rechtsteiner; Sevinc Ercan; T. Takasaki; T. Phippen; Thea A. Egelhofer; Wenchao Wang; Hiroshi Kimura; Jason D. Lieb; Susan Strome

Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost ∼2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5′ regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.


Nature Genetics | 2007

X-chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation

Sevinc Ercan; Paul G. Giresi; Christina M. Whittle; Xinmin Zhang; Roland D. Green; Jason D. Lieb

Among organisms with chromosome-based mechanisms of sex determination, failure to equalize expression of X-linked genes between the sexes is typically lethal. In C. elegans, XX hermaphrodites halve transcription from each X chromosome to match the output of XO males. Here, we mapped the binding location of the condensin homolog DPY-27 and the zinc finger protein SDC-3, two components of the C. elegans dosage compensation complex (DCC). We observed strong foci of DCC binding on X, surrounded by broader regions of localization. Binding foci, but not adjacent regions of localization, were distinguished by clusters of a 10-bp DNA motif, suggesting a recruitment-and-spreading mechanism for X recognition. The DCC was preferentially bound upstream of genes, suggesting modulation of transcriptional initiation and polymerase-coupled spreading. Stronger DCC binding upstream of genes with high transcriptional activity indicated a mechanism for tuning DCC activity at specific loci. These data aid in understanding how proteins involved in higher-order chromosome dynamics can regulate transcription at individual loci.


Nature | 2012

An inverse relationship to germline transcription defines centromeric chromatin in C. elegans

Reto Gassmann; Andreas Rechtsteiner; Karen W. Yuen; A. Muroyama; Thea A. Egelhofer; Laura J. Gaydos; Francie Barron; Paul S. Maddox; Anthony Essex; Joost Monen; Sevinc Ercan; Jason D. Lieb; Karen Oegema; Susan Strome; Arshad Desai

Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length. Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically. Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.


PLOS Genetics | 2008

The Genomic Distribution and Function of Histone Variant HTZ-1 during C. elegans Embryogenesis

Christina M. Whittle; Karissa N. McClinic; Sevinc Ercan; Xinmin Zhang; Roland D. Green; William G. Kelly; Jason D. Lieb

In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis.


Genome Biology | 2013

Genome-wide analysis of condensin binding in Caenorhabditis elegans

Anna-Lena Kranz; Chen-Yu Jiao; Lara Heermans Winterkorn; Sarah Elizabeth Albritton; Maxwell Kramer; Sevinc Ercan

BackgroundCondensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation.ResultsTo understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites.ConclusionsOur results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II.


PLOS Genetics | 2012

H4K20me1 Contributes to Downregulation of X-Linked Genes for C. elegans Dosage Compensation

Anne Vielle; Jackie Lang; Yan Dong; Sevinc Ercan; Chitra V. Kotwaliwale; Andreas Rechtsteiner; Alex Appert; Q. Brent Chen; Andréa C. Dosé; Thea A. Egelhofer; Hiroshi Kimura; Przemyslaw Stempor; Abby F. Dernburg; Jason D. Lieb; Susan Strome; Julie Ahringer

The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.


Genetics | 2014

Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes

Sarah Elizabeth Albritton; Anna Lena Kranz; Prashant Rao; Maxwell Kramer; Christoph Dieterich; Sevinc Ercan

Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno’s hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.


Current Biology | 2009

The C. elegans Dosage Compensation Complex Propagates Dynamically and Independently of X Chromosome Sequence

Sevinc Ercan; L. Dick; Jason D. Lieb

BACKGROUND The C. elegans dosage compensation complex (DCC) associates with both X chromosomes of XX animals to reduce X-linked transcript levels. Five DCC members are homologous to subunits of the evolutionarily conserved condensin complex, and two noncondensin subunits are required for DCC recruitment to X. RESULTS We investigated the molecular mechanism of DCC recruitment and spreading along X by examining gene expression and the binding patterns of DCC subunits in different stages of development, and in strains harboring X;autosome (X;A) fusions. We show that DCC binding is dynamically specified according to gene activity during development and that the mechanism of DCC spreading is independent of X chromosome DNA sequence. Accordingly, in X;A fusion strains, DCC binding propagates from X-linked recruitment sites onto autosomal promoters as a function of distance. Quantitative analysis of spreading suggests that the condensin-like subunits spread from recruitment sites to promoters more readily than subunits involved in initial X targeting. CONCLUSIONS A highly conserved chromatin complex is appropriated to accomplish domain-scale transcriptional regulation during C. elegans development. Unlike X recognition, which is specified partly by DNA sequence, spreading is sequence independent and coupled to transcriptional activity. Similarities to the X recognition and spreading strategies used by the Drosophila DCC suggest mechanisms fundamental to chromosome-scale gene regulation.

Collaboration


Dive into the Sevinc Ercan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Strome

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Whittle

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge