Shaalee Dworski
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaalee Dworski.
Embo Molecular Medicine | 2013
Abdulfatah Alayoubi; James Cm M. Wang; Bryan Au; Stéphane Carpentier; Virginie Garcia; Shaalee Dworski; Samah El-Ghamrasni; Kevin N. Kirouac; Mathilde J. Exertier; Zi Jian Xiong; Gilbert G. Privé; Calogera M. Simonaro; Josefina Casas; Gemma Fabriàs; Edward H. Schuchman; Patricia V. Turner; Razqallah Hakem; Thierry Levade; Jeffrey A. Medin
Farber disease (FD) is a severe inherited disorder of lipid metabolism characterized by deficient lysosomal acid ceramidase (ACDase) activity, resulting in ceramide accumulation. Ceramide and metabolites have roles in cell apoptosis and proliferation. We introduced a single‐nucleotide mutation identified in human FD patients into the murine Asah1 gene to generate the first model of systemic ACDase deficiency. Homozygous Asah1P361R/P361R animals showed ACDase defects, accumulated ceramide, demonstrated FD manifestations and died within 7–13 weeks. Mechanistically, MCP‐1 levels were increased and tissues were replete with lipid‐laden macrophages. Treatment of neonates with a single injection of human ACDase‐encoding lentivector diminished the severity of the disease as highlighted by enhanced growth, decreased ceramide, lessened cellular infiltrations and increased lifespans. This model of ACDase deficiency offers insights into the pathophysiology of FD and the roles of ACDase, ceramide and related sphingolipids in cell signaling and growth, as well as facilitates the development of therapy.
Analytical Chemistry | 2014
E. Ellen Jones; Shaalee Dworski; Daniel Canals; Josefina Casas; Gemma Fabriàs; Drew Schoenling; Thierry Levade; Chadrick E. Denlinger; Yusuf A. Hannun; Jeffrey A. Medin; Richard R. Drake
A novel MALDI-FTICR imaging mass spectrometry (MALDI-IMS) workflow is described for on-tissue detection, spatial localization, and structural confirmation of low abundance bioactive ceramides and other sphingolipids. Increasingly, altered or elevated levels of sphingolipids, sphingolipid metabolites, and sphingolipid metabolizing enzymes have been associated with a variety of disorders such as diabetes, obesity, lysosomal storage disorders, and cancer. Ceramide, which serves as a metabolic hub in sphingolipid metabolism, has been linked to cancer signaling pathways and to metabolic regulation with involvement in autophagy, cell-cycle arrest, senescence, and apoptosis. Using kidney tissues from a new Farber disease mouse model in which ceramides of all acyl chain lengths and other sphingolipid metabolites accumulate in tissues, specific ceramides and sphingomyelins were identified by on-tissue isolation and fragmentation, coupled with an on-tissue digestion by ceramidase or sphingomyelinase. Multiple glycosphingolipid species were also detected. The newly generated library of sphingolipid ions was then applied to MALDI-IMS of human lung cancer tissues. Multiple tumor specific ceramide and sphingomyelin species were detected and confirmed by on-tissue enzyme digests and structural confirmation. High-resolution MALDI-IMS in combination with novel on-tissue ceramidase and sphingomyelinase enzyme digestions makes it now possible to rapidly visualize the distribution of bioactive ceramides and sphingomyelin in tissues.
Stem cell reports | 2014
Matthew P. Krause; Shaalee Dworski; Konstantin Feinberg; Karen L. Jones; Adam P.W. Johnston; Smitha Paul; Maryline Paris; Elior Peles; Darius J. Bägli; David R. Kaplan; Freda D. Miller
Summary Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from neural crest-derived facial and mesodermally derived foreskin dermis and the foreskin SKPs can make myelinating Schwann cells. Thus, nonneural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally defined lineage boundaries are more flexible than widely thought.
BBA clinical | 2017
Xingxuan He; Shaalee Dworski; Changzhi Zhu; Victor DeAngelis; Alex Solyom; Jeffrey A. Medin; Calogera M. Simonaro; Edward H. Schuchman
A series of studies were carried out in Farber disease (OMIM #228000) cells and mice to evaluate the feasibility of enzyme replacement therapy (ERT) for this disorder. Media from Chinese hamster ovary (CHO) cells overexpressing human recombinant acid ceramidase (rhAC) was used to treat fibroblasts from a Farber disease patient, leading to significantly reduced ceramide. We also found that chondrocytes from Farber disease mice had a markedly abnormal chondrogenic phenotype, and this was corrected by rhAC as well. Acute dosing of rhAC in Farber mice confirmed the enzymes bioactivity in vivo, and showed that it could be safely administered at doses up to 50 mg/kg. These studies also revealed little or no re-accumulation of ceramide in tissues for at least 7 days after enzyme administration. Once weekly administration of rhAC moderately improved survival of the mice, which could be enhanced by starting enzyme administration at an earlier age (3 days vs. 3 weeks). Repeat administration of the enzyme also led to normalization of spleen size, significantly reduced plasma levels of monocyte chemoattractant protein 1 (MCP-1), reduced infiltration of macrophages into liver and spleen, and significantly reduced ceramide and sphingosine in tissues. Overall, we conclude that ERT should be further developed for this debilitating and life-threatening disorder.
Biochimica et Biophysica Acta | 2017
Shaalee Dworski; Ping Lu; Aneal Khan; Bruno Maranda; John D. Mitchell; Rossella Parini; Maja Di Rocco; Boris Hügle; Makoto Yoshimitsu; Bo Magnusson; Balahan Makay; Nur Arslan; Norberto Guelbert; Karoline Ehlert; Andrea Jarisch; Janet Gardner-Medwin; Rawane Dagher; Maria Teresa Terreri; Charles Marques Lorenco; Lilianna Barillas-Arias; Pranoot Tanpaiboon; Alexander Solyom; James S. Norris; Xingxuan He; Edward H. Schuchman; Thierry Levade; Jeffrey A. Medin
Acid Ceramidase Deficiency (Farber disease, FD) is an ultra-rare Lysosomal Storage Disorder that is poorly understood and often misdiagnosed as Juvenile Idiopathic Arthritis (JIA). Hallmarks of FD are accumulation of ceramides, widespread macrophage infiltration, splenomegaly, and lymphocytosis. The cytokines involved in this abnormal hematopoietic state are unknown. There are dozens of ceramide species and derivatives, but the specific ones that accumulate in FD have not been investigated. We used a multiplex assay to analyze cytokines and mass spectrometry to analyze ceramides in plasma from patients and mice with FD, controls, Farber patients treated by hematopoietic stem cell transplantation (HSCT), JIA patients, and patients with Gaucher disease. KC, MIP-1α, and MCP-1 were sequentially upregulated in plasma from FD mice. MCP-1, IL-10, IL-6, IL-12, and VEGF levels were elevated in plasma from Farber patients but not in control or JIA patients. C16-Ceramide (C16-Cer) and dhC16-Cer were upregulated in plasma from FD mice. a-OH-C18-Cer, dhC12-Cer, dhC24:1-Cer, and C22:1-Cer-1P accumulated in plasma from patients with FD. Most cytokines and only a-OH-C18-Cer returned to baseline levels in HSCT-treated Farber patients. Sphingosines were not altered. Chitotriosidase activity was also relatively low. A unique cytokine and ceramide profile was seen in the plasma of Farber patients that was not observed in plasma from HSCT-treated Farber patients, JIA patients, or Gaucher patients. The cytokine profile can potentially be used to prevent misdiagnosis of Farber as JIA and to monitor the response to treatment. Further understanding of why these signaling molecules and lipids are elevated can lead to better understanding of the etiology and pathophysiology of FD and inform development of future treatments.
Haematologica | 2015
Shaalee Dworski; Alexandra Berger; Caren Furlonger; Joshua M. Moreau; Makoto Yoshimitsu; Jessa Trentadue; Bryan Au; Christopher J. Paige; Jeffrey A. Medin
Acid ceramidase (ACDase) is ubiquitous and catalyzes the degradation of ceramide. ACDase and ceramides have been implicated in many disorders, including cancer, obesity, diabetes, inflammation, and neurodegenerative diseases.[1][1]–[3][2] Deficiencies in ACDase activity lead to Farber disease, but
Molecular therapy. Methods & clinical development | 2017
Ju Huang; Aneal Khan; Bryan Au; Dwayne L. Barber; Lucía López-Vásquez; Nicole Prokopishyn; Michel Boutin; Michael Rothe; Jack W. Rip; Mona Abaoui; Murtaza S. Nagree; Shaalee Dworski; Axel Schambach; Armand Keating; Michael West; John Klassen; Patricia V. Turner; Sandra Sirrs; C. Anthony Rupar; Christiane Auray-Blais; Ronan Foley; Jeffrey A. Medin
Fabry disease is a rare lysosomal storage disorder (LSD). We designed multiple recombinant lentivirus vectors (LVs) and tested their ability to engineer expression of human α-galactosidase A (α-gal A) in transduced Fabry patient CD34+ hematopoietic cells. We further investigated the safety and efficacy of a clinically directed vector, LV/AGA, in both ex vivo cell culture studies and animal models. Fabry mice transplanted with LV/AGA-transduced hematopoietic cells demonstrated α-gal A activity increases and lipid reductions in multiple tissues at 6 months after transplantation. Next we found that LV/AGA-transduced Fabry patient CD34+ hematopoietic cells produced even higher levels of α-gal A activity than normal CD34+ hematopoietic cells. We successfully transduced Fabry patient CD34+ hematopoietic cells with “near-clinical grade” LV/AGA in small-scale cultures and then validated a clinically directed scale-up transduction process in a GMP-compliant cell processing facility. LV-transduced Fabry patient CD34+ hematopoietic cells were subsequently infused into NOD/SCID/Fabry (NSF) mice; α-gal A activity corrections and lipid reductions were observed in several tissues 12 weeks after the xenotransplantation. Additional toxicology studies employing NSF mice xenotransplanted with the therapeutic cell product demonstrated minimal untoward effects. These data supported our successful clinical trial application (CTA) to Health Canada and opening of a “first-in-the-world” gene therapy trial for Fabry disease.
PLOS ONE | 2013
Cornelia Tolg; Alya Ahsan; Shaalee Dworski; Tyler Kirwan; Jeffrey Xu Yu; Karen S. Aitken; Darius Bagli
Smooth muscle cell containing organs (bladder, heart, blood vessels) are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs) can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF) suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain) as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2018
Fabian Ps Yu; Diana Islam; Jakub Sikora; Shaalee Dworski; Jiří Gurka; Lucía López-Vásquez; Mingyao Liu; Wolfgang M. Kuebler; Thierry Levade; Haibo Zhang; Jeffrey A. Medin
Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.
Scientific Reports | 2018
Fabian P.S. Yu; Shaalee Dworski; Jeffrey A. Medin
Farber Disease (FD) is an ultra-rare Lysosomal Storage Disorder caused by deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency manifest a spectrum of symptoms including formation of nodules, painful joints, and a hoarse voice. Classic FD patients will develop histiocytes in organs and die in childhood. Monocyte chemotactic protein (MCP-1; CCL2) is significantly elevated in both FD patients and a mouse model we previously generated. Here, to further study MCP-1 in FD, we created an ACDase;MCP-1 double mutant mouse. We show that deletion of MCP-1 reduced leukocytosis, delayed weight loss, and improved lifespan. Reduced inflammation and fibrosis were observed in livers from double mutant animals. Bronchial alveolar lavage fluid analyses revealed a reduction in cellular infiltrates and protein accumulation. Furthermore, reduced sphingolipid accumulation was observed in the lung and liver but not in the brain. The neurological and hematopoietic defects observed in FD mice were maintained. A compensatory cytokine response was found in the double mutants, however, that may contribute to continued signs of inflammation and injury. Taken together, targeting a reduction of MCP-1 opens the door to a better understanding of the mechanistic consequences of ceramide accumulation and may even delay the progression of FD in some organ systems.