Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shabeesh Balan is active.

Publication


Featured researches published by Shabeesh Balan.


Biological Psychiatry | 2015

Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses

Motoko Maekawa; Kazuo Yamada; Manabu Toyoshima; Tetsuo Ohnishi; Yoshimi Iwayama; Chie Shimamoto; Tomoko Toyota; Yayoi Nozaki; Shabeesh Balan; Hideo Matsuzaki; Yasuhide Iwata; Katsuaki Suzuki; Mitsuhiro Miyashita; Mitsuru Kikuchi; Motoichiro Kato; Yohei Okada; Wado Akamatsu; Norio Mori; Yuji Owada; Masanari Itokawa; Hideyuki Okano; Takeo Yoshikawa

BACKGROUND Identifying beneficial surrogate genetic markers in psychiatric disorders is crucial but challenging. METHODS Given that scalp hair follicles are easily accessible and, like the brain, are derived from the ectoderm, expressions of messenger RNA (mRNA) and microRNA in the organ were examined between schizophrenia (n for first/second = 52/42) and control subjects (n = 62/55) in two sets of cohort. Genes of significance were also analyzed using postmortem brains (n for case/control = 35/35 in Brodmann area 46, 20/20 in cornu ammonis 1) and induced pluripotent stem cells (n = 4/4) and pluripotent stem cell-derived neurospheres (n = 12/12) to see their role in the central nervous system. Expression levels of mRNA for autism (n for case/control = 18/24) were also examined using scalp hair follicles. RESULTS Among mRNA examined, FABP4 was downregulated in schizophrenia subjects by two independent sample sets. Receiver operating characteristic curve analysis determined that the sensitivity and specificity were 71.8% and 66.7%, respectively. FABP4 was expressed from the stage of neurosphere. Additionally, microarray-based microRNA analysis showed a trend of increased expression of hsa-miR-4449 (p = .0634) in hair follicles from schizophrenia. hsa-miR-4449 expression was increased in Brodmann area 46 from schizophrenia (p = .0007). Finally, we tested the expression of nine putative autism candidate genes in hair follicles and found decreased CNTNAP2 expression in the autism cohort. CONCLUSIONS Scalp hair follicles could be a beneficial genetic biomarker resource for brain diseases, and further studies of FABP4 are merited in schizophrenia pathogenesis.


PLOS ONE | 2013

Population-Specific Haplotype Association of the Postsynaptic Density Gene DLG4 with Schizophrenia, in Family-Based Association Studies

Shabeesh Balan; Kazuo Yamada; Eiji Hattori; Yoshimi Iwayama; Tomoko Toyota; Tetsuo Ohnishi; Motoko Maekawa; Manabu Toyoshima; Yasuhide Iwata; Katsuaki Suzuki; Mitsuru Kikuchi; Takeo Yoshikawa

The post-synaptic density (PSD) of glutamatergic synapses harbors a multitude of proteins critical for maintaining synaptic dynamics. Alteration of protein expression levels in this matrix is a marked phenomenon of neuropsychiatric disorders including schizophrenia, where cognitive functions are impaired. To investigate the genetic relationship of genes expressed in the PSD with schizophrenia, a family-based association analysis of genetic variants in PSD genes such as DLG4, DLG1, PICK1 and MDM2, was performed, using Japanese samples (124 pedigrees, n = 376 subjects). Results showed a significant association of the rs17203281 variant from the DLG4 gene, with preferential transmission of the C allele (p = 0.02), although significance disappeared after correction for multiple testing. Replication analysis of this variant, found no association in a Chinese schizophrenia cohort (293 pedigrees, n = 1163 subjects) or in a Japanese case-control sample (n = 4182 subjects). The DLG4 expression levels between postmortem brain samples from schizophrenia patients showed no significant changes from controls. Interestingly, a five marker haplotype in DLG4, involving rs2242449, rs17203281, rs390200, rs222853 and rs222837, was enriched in a population specific manner, where the sequences A-C-C-C-A and G-C-C-C-A accumulated in Japanese (p = 0.0009) and Chinese (p = 0.0007) schizophrenia pedigree samples, respectively. However, this could not be replicated in case-control samples. None of the variants in other examined candidate genes showed any significant association in these samples. The current study highlights a putative role for DLG4 in schizophrenia pathogenesis, evidenced by haplotype association, and warrants further dense screening for variants within these haplotypes.


Translational Psychiatry | 2016

Analysis of induced pluripotent stem cells carrying 22q11.2 deletion

Manabu Toyoshima; Wado Akamatsu; Yohei Okada; Tetsuo Ohnishi; Shabeesh Balan; Yasuko Hisano; Yoshimi Iwayama; Tomoko Toyota; Takuya Matsumoto; N Itasaka; S Sugiyama; M Tanaka; M Yano; Brian Dean; Hideyuki Okano; Takeo Yoshikawa

Given the complexity and heterogeneity of the genomic architecture underlying schizophrenia, molecular analyses of these patients with defined and large effect-size genomic defects could provide valuable clues. We established human-induced pluripotent stem cells from two schizophrenia patients with the 22q11.2 deletion (two cell lines from each subject, total of four cell lines) and three controls (total of four cell lines). Neurosphere size, neural differentiation efficiency, neurite outgrowth, cellular migration and the neurogenic-to-gliogenic competence ratio were significantly reduced in patient-derived cells. As an underlying mechanism, we focused on the role of DGCR8, a key gene for microRNA (miRNA) processing and mapped in the deleted region. In mice, Dgcr8 hetero-knockout is known to show a similar phenotype of reduced neurosphere size (Ouchi et al., 2013). The miRNA profiling detected reduced expression levels of miRNAs belonging to miR-17/92 cluster and miR-106a/b in the patient-derived neurospheres. Those miRNAs are reported to target p38α, and conformingly the levels of p38α were upregulated in the patient-derived cells. p38α is known to drive gliogenic differentiation. The inhibition of p38 activity by SB203580 in patient-derived neurospheres partially restored neurogenic competence. Furthermore, we detected elevated expression of GFAP, a gliogenic (astrocyte) marker, in postmortem brains from schizophrenia patients without the 22q11.2 deletion, whereas inflammation markers (IL1B and IL6) remained unchanged. In contrast, a neuronal marker, MAP2 expressions were decreased in schizophrenia brains. These results suggest that a dysregulated balance of neurogenic-to-gliogenic competence may underlie neurodevelopmental disorders such as schizophrenia.


Molecular Autism | 2014

Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

Shabeesh Balan; Yoshimi Iwayama; Motoko Maekawa; Tomoko Toyota; Tetsuo Ohnishi; Manabu Toyoshima; Chie Shimamoto; Kayoko Esaki; Kazuo Yamada; Yasuhide Iwata; Katsuaki Suzuki; Masayuki Ide; Motonori Ota; Satoshi Fukuchi; Masatsugu Tsujii; Norio Mori; Yoichi Shinkai; Takeo Yoshikawa

BackgroundHistone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD.MethodsSince G9a-GLP-Wiz forms a heteromeric methyltransferase complex, all the protein-coding regions and exon/intron boundaries of EHMT1, EHMT2 and WIZ were sequenced in Japanese ASD subjects. The detected variants were prioritized based on novelty and functionality. The expression levels of these genes were tested in blood cells and postmortem brain samples from ASD and control subjects. Expression of EHMT1 and EHMT2 isoforms were determined by digital PCR.ResultsWe identified six nonsynonymous variants: three in EHMT1, two in EHMT2 and one in WIZ. Two variants, the EHMT1 ankyrin repeat domain (Lys968Arg) and EHMT2 SET domain (Thr961Ile) variants were present exclusively in cases, but showed no statistically significant association with ASD. The EHMT2 transcript expression was significantly elevated in the peripheral blood cells of ASD when compared with control samples; but not for EHMT1 and WIZ. Gene expression levels of EHMT1, EHMT2 and WIZ in Brodmann area (BA) 9, BA21, BA40 and the dorsal raphe nucleus (DoRN) regions from postmortem brain samples showed no significant changes between ASD and control subjects. Nor did expression levels of EHMT1 and EHMT2 isoforms in the prefrontal cortex differ significantly between ASD and control groups.ConclusionsWe identified two novel rare missense variants in the EHMT1 and EHMT2 genes of ASD patients. We surmise that these variants alone may not be sufficient to exert a significant effect on ASD pathogenesis. The elevated expression of EHMT2 in the peripheral blood cells may support the notion of a restrictive chromatin state in ASD, similar to schizophrenia.


Gene | 2013

Major vault protein (MVP) gene polymorphisms and drug resistance in mesial temporal lobe epilepsy with hippocampal sclerosis.

Shabeesh Balan; Sarada lekshmi; Koramannil Radha; Sanish Sathyan; Joseph Vijai; Moinak Banerjee; Kurupath Radhakrishnan

The human major vault protein (MVP) has been implicated in the development of drug resistance in cancer cells. Over expression of MVP has also been reported in brain tissue samples from antiepileptic drug (AED)-resistant human focal epilepsies. To investigate the relationship between single nucleotide polymorphisms (SNPs) involving the MVP gene and AED-resistance, we compared the distribution of three SNPs in the MVP gene, rs4788187, rs3815824 and rs3815823, among 220 patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype of AED-resistant epilepsy syndrome), 201 patients with juvenile myoclonic epilepsy (JME) (prototype of AED-responsive epilepsy syndrome) and 213 ethnically matched non-epilepsy controls. All the patients and controls were residents of the South Indian state of Kerala for more than three generations. We did not find any significant difference in allele and genotypic frequencies of the studied SNPs between AED-resistant and AED-responsive cohorts, and between AED-resistant and AED-responsive cohorts independently and pooled together when compared with the controls. We conclude that rs4788187, rs3815824, rs3815823 variants of the MVP gene are associated neither with predisposition for epilepsy nor with AED-resistance in the population that we have studied. Our results suggest the need for further research into the link between MVP and AED-resistance.


British Journal of Psychiatry | 2014

22q11.2 deletion carriers and schizophrenia-associated novel variants

Shabeesh Balan; Yoshimi Iwayama; Tomoko Toyota; Manabu Toyoshima; Motoko Maekawa; Takeo Yoshikawa

The penetrance of schizophrenia risk in carriers of the 22q11.2 deletion is high but incomplete, suggesting the possibility of additional genetic defects. We performed whole exome sequencing on two individuals with 22q11.2 deletion, one with schizophrenia and the other who was psychosis-free. The results revealed novel genetic variants related to neuronal function exclusively in the person with schizophrenia (frameshift: KAT8, APOH and SNX31; nonsense: EFCAB11 and CLVS2). This study paves the way towards a more complete understanding of variant dose and genetic architecture in schizophrenia.


PLOS ONE | 2014

Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

Shabeesh Balan; Sumitha Prameela Bharathan; Neetha Nanoth Vellichiramal; Sanish Sathyan; Vijai Joseph; Kurupath Radhakrishnan; Moinak Banerjee

Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2015

Genetic analysis of the glyoxalase system in schizophrenia

Fabian N. Bangel; Kazuo Yamada; Makoto Arai; Yoshimi Iwayama; Shabeesh Balan; Tomoko Toyota; Yasuhide Iwata; Katsuaki Suzuki; Mitsuru Kikuchi; Tasuku Hashimoto; Nobuhisa Kanahara; Norio Mori; Masanari Itokawa; Oliver Stork; Takeo Yoshikawa

Recent reports suggest that carbonyl stress might affect a subset of schizophrenia patients suffering from severe symptoms. Carbonyl stress protection is achieved by the glyoxalase system consisting of two enzymes, glyoxalase 1 and 2, which in humans are encoded by the genes GLO1 and HAGH, respectively. Glyoxalase 1 and 2 catalyze the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, which are particularly damaging components of carbonyl stress. Here, we investigated the role of the glyoxalase system in schizophrenia by performing association analyses of common genetic variants (n=12) in GLO1 and HAGH in a Japanese sample consisting of 2012 schizophrenia patients and 2170 healthy controls. We detected a nominally significant association with schizophrenia (p=0.020) of rs11859266, a SNP in the intronic region of HAGH. However, rs11859266 did not survive multiple testing (empirical p=0.091). The variants in HAGH, rs11859266 and rs3743852, showed significant associations with schizophrenia in males at allelic and genotype levels, which remained persistent after multiple testing with the exception of rs3743852 for the genotype model. We further measured the mRNA expression of both genes in postmortem brain, but did not detect any changes in transcript expression levels between case and control samples or in sex-specific comparisons. Therefore, our findings suggest that an explanation of elevated carbonyl stress in a substantial part (reported as ~20%) of patients with schizophrenia will require the examination of a much larger cohort to detect risk alleles with weak effect size and/or other risk factors.


Scientific Reports | 2018

Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions

Tadahiro Shimazu; Tamio Furuse; Shabeesh Balan; Ikuko Yamada; Shuzo Okuno; Hiroko Iwanari; Takehiro Suzuki; Takao Hamakubo; Naoshi Dohmae; Takeo Yoshikawa; Shigeharu Wakana; Yoichi Shinkai

METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.


Schizophrenia Research | 2017

Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia

Shabeesh Balan; Kazuo Yamada; Yoshimi Iwayama; Takanori Hashimoto; Tomoko Toyota; Chie Shimamoto; Motoko Maekawa; Shu Takagai; Tomoyasu Wakuda; Yosuke Kameno; Daisuke Kurita; Kohei Yamada; Mitsuru Kikuchi; Tasuku Hashimoto; Nobuhisa Kanahara; Takeo Yoshikawa

Involvement of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia pathogenesis through disrupted neurodevelopment has been highlighted in numerous studies. However, the function of common genetic variants of this system in determining schizophrenia risk is unknown. We therefore tested the association of 375 tagged SNPs in genes derived from the GABAergic system, such as GABAA receptor subunit genes, and GABA related genes (glutamate decarboxylase genes, GABAergic-marker gene, genes involved in GABA receptor trafficking and scaffolding) in Japanese schizophrenia case-control samples (n=2926; 1415 cases and 1511 controls). We observed nominal association of SNPs in nine GABAA receptor subunit genes and the GPHN gene with schizophrenia, although none survived correction for study-wide multiple testing. Two SNPs located in the GABRA1 gene, rs4263535 (Pallele=0.002; uncorrected) and rs1157122 (Pallele=0.006; uncorrected) showed top hits, followed by rs723432 (Pallele=0.007; uncorrected) in the GPHN gene. All three were significantly associated with schizophrenia and survived gene-wide multiple testing. Haplotypes containing associated variants in GABRA1 but not GPHN were significantly associated with schizophrenia. To conclude, we provided substantiating genetic evidence for the involvement of the GABAergic system in schizophrenia susceptibility. These results warrant further investigations to replicate the association of GABRA1 and GPHN with schizophrenia and to discern the precise mechanisms of disease pathophysiology.

Collaboration


Dive into the Shabeesh Balan's collaboration.

Top Co-Authors

Avatar

Takeo Yoshikawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Manabu Toyoshima

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yoshimi Iwayama

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Motoko Maekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tomoko Toyota

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tetsuo Ohnishi

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chie Shimamoto

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Kazuo Yamada

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge