Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahab Asgharzadeh is active.

Publication


Featured researches published by Shahab Asgharzadeh.


Nature Genetics | 2013

The genetic landscape of high-risk neuroblastoma

Trevor J. Pugh; Olena Morozova; Edward F. Attiyeh; Shahab Asgharzadeh; Jun S. Wei; Daniel Auclair; Scott L. Carter; Kristian Cibulskis; Megan Hanna; Adam Kiezun; Jaegil Kim; Michael S. Lawrence; Lee Lichenstein; Aaron McKenna; Chandra Sekhar Pedamallu; Alex H. Ramos; Erica Shefler; Andrey Sivachenko; Carrie Sougnez; Chip Stewart; Adrian Ally; Inanc Birol; Readman Chiu; Richard Corbett; Martin Hirst; Shaun D. Jackman; Baljit Kamoh; Alireza Hadj Khodabakshi; Martin Krzywinski; Allan Lo

Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.


The New England Journal of Medicine | 2008

Chromosome 6p22 Locus Associated with Clinically Aggressive Neuroblastoma

John M. Maris; Yael P. Mosse; Jonathan P. Bradfield; Cuiping Hou; Stefano Monni; Richard H. Scott; Shahab Asgharzadeh; Edward F. Attiyeh; Sharon J. Diskin; Marci Laudenslager; Cynthia Winter; Kristina A. Cole; Joseph T. Glessner; Cecilia Kim; Edward C. Frackelton; Tracy Casalunovo; Andrew W. Eckert; Mario Capasso; Eric Rappaport; Carmel McConville; Wendy B. London; Robert C. Seeger; Nazneen Rahman; Marcella Devoto; Struan F. A. Grant; Hongzhe Li; Hakon Hakonarson

BACKGROUND Neuroblastoma is a malignant condition of the developing sympathetic nervous system that most commonly affects young children and is often lethal. Its cause is not known. METHODS We performed a genomewide association study by first genotyping blood DNA samples from 1032 patients with neuroblastoma and 2043 control subjects of European descent using the Illumina HumanHap550 BeadChip. Samples from three independent groups of patients with neuroblastoma (a total of 720 patients) and 2128 control subjects were then genotyped to replicate significant associations. RESULTS We observed a significant association between neuroblastoma and the common minor alleles of three consecutive single-nucleotide polymorphisms (SNPs) at chromosome band 6p22 and containing the predicted genes FLJ22536 and FLJ44180 (P=1.71x10(-9) to 7.01x10(-10); allelic odds ratio, 1.39 to 1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of the development of neuroblastoma (odds ratio, 1.97; 95% confidence interval, 1.58 to 2.45). Subsequent genotyping of the three 6p22 SNPs in three independent case series confirmed our observation of an association (P=9.33x10(-15) at rs6939340 for joint analysis). Patients with neuroblastoma who were homozygous for the risk alleles at 6p22 were more likely to have metastatic (stage 4) disease (P=0.02), amplification of the MYCN oncogene in the tumor cells (P=0.006), and disease relapse (P=0.01). CONCLUSIONS A common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma.


Nature Genetics | 2009

Common variations in BARD1 influence susceptibility to high-risk neuroblastoma

Mario Capasso; Marcella Devoto; Cuiping Hou; Shahab Asgharzadeh; Joseph T. Glessner; Edward F. Attiyeh; Yael P. Mosse; Cecilia Kim; Sharon J. Diskin; Kristina A. Cole; Kristopher R. Bosse; Maura Diamond; Marci Laudenslager; Cynthia Winter; Jonathan P. Bradfield; Richard H. Scott; Jayanti Jagannathan; Maria Garris; Carmel McConville; Wendy B. London; Robert C. Seeger; Struan F. A. Grant; Hongzhe Li; Nazneen Rahman; Eric Rappaport; Hakon Hakonarson; John M. Maris

We conducted a SNP-based genome-wide association study (GWAS) focused on the high-risk subset of neuroblastoma. As our previous unbiased GWAS showed strong association of common 6p22 SNP alleles with aggressive neuroblastoma, we restricted our analysis here to 397 high-risk cases compared to 2,043 controls. We detected new significant association of six SNPs at 2q35 within the BARD1 locus (Pallelic = 2.35 × 10−9–2.25 × 10−8). We confirmed each SNP association in a second series of 189 high-risk cases and 1,178 controls (Pallelic = 7.90 × 10−7–2.77 × 10−4). We also tested the two most significant SNPs (rs6435862, rs3768716) in two additional independent high-risk neuroblastoma case series, yielding combined allelic odds ratios of 1.68 each (P = 8.65 × 10−18 and 2.74 × 10−16, respectively). We also found significant association with known BARD1 nonsynonymous SNPs. These data show that common variation in BARD1 contributes to the etiology of the aggressive and most clinically relevant subset of human neuroblastoma.


Journal of Clinical Investigation | 2009

Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages

Liping Song; Shahab Asgharzadeh; Jill Salo; Kelly Engell; Hong-Wei Wu; Richard Sposto; Tasnim Ara; Ayaka M. Silverman; Yves A. DeClerck; Robert C. Seeger; Leonid S. Metelitsa

Tumor infiltration with Valpha24-invariant NKT cells (NKTs) associates with favorable outcome in neuroblastoma and other cancers. Although NKTs can be directly cytotoxic against CD1d+ cells, the majority of human tumors are CD1d-. Therefore, the role of NKTs in cancer remains largely unknown. Here, we demonstrate that CD68+ tumor-associated monocytes/macrophages (TAMs) represented the majority of CD1d-expressing cells in primary human neuroblastomas. TAMs stimulated neuroblastoma growth in human cell lines and their xenografts in NOD/SCID mice via IL-6 production. Indeed, TAMs produced IL-6 in primary tumors and in the BM of patients with metastatic neuroblastoma. Gene expression analysis using TaqMan low-density arrays of 129 primary human neuroblastomas without MYCN amplification revealed that high-level expression of TAM-specific genes (CD14, CD16, IL6, IL6R, and TGFB1) was associated with poor 5-year event-free survival. While NKTs were not cytotoxic against neuroblastoma cells, they effectively killed monocytes pulsed with tumor cell lysate. The killing of monocytes was CD1d restricted because it was inhibited by a CD1d-specific mAb. Cotransfer of human monocytes and NKTs to tumor-bearing NOD/SCID mice decreased monocyte number at the tumor site and suppressed tumor growth compared with mice transferred with monocytes alone. Thus, killing of TAMs reveals what we believe to be a novel mechanism of NKT antitumor activity that relates to the disease outcome.


Journal of Experimental Medicine | 2004

Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2.

Leonid S. Metelitsa; Hong-Wei Wu; Hong Wang; Yujun Yang; Zamir Warsi; Shahab Asgharzadeh; Susan Groshen; S. Brian Wilson; Robert C. Seeger

CD1d-restricted Vα24-Jα18–invariant natural killer T cells (iNKTs) are potentially important in tumor immunity. However, little is known about their localization to tumors. We analyzed 98 untreated primary neuroblastomas from patients with metastatic disease (stage 4) for tumor-infiltrating iNKTs using TaqMan® reverse transcription polymerase chain reaction and immunofluorescent microscopy. 52 tumors (53%) contained iNKTs, and oligonucleotide microarray analysis of the iNKT+ and iNKT− tumors revealed that the former expressed higher levels of CCL2/MCP-1, CXCL12/SDF-1, CCL5/RANTES, and CCL21/SLC. Eight tested neuroblastoma cell lines secreted a range of CCL2 (0–21.6 ng/ml), little CXCL12 (≤0.1 ng/ml), and no detectable CCL5 or CCL21. CCR2, the receptor for CCL2, was more frequently expressed by iNKT compared with natural killer and T cells from blood (P < 0.001). Supernatants of neuroblastoma cell lines that produced CCL2 induced in vitro migration of iNKTs from blood of patients and normal adults; this was abrogated by an anti-CCL2 monoclonal antibody. CCL2 expression by tumors was found to inversely correlate with MYCN proto-oncogene amplification and expression (r = 0.5, P < 0.001), and MYCN-high/CCL2-low expression accurately predicted the absence of iNKTs (P < 0.001). In summary, iNKTs migrate toward neuroblastoma cells in a CCL2-dependent manner, preferentially infiltrating MYCN nonamplified tumors that express CCL2.


Nature Genetics | 2015

Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

Thomas F. Eleveld; Derek A. Oldridge; Virginie Bernard; Jan Koster; Leo Colmet Daage; Sharon J. Diskin; Linda Schild; Nadia Bessoltane Bentahar; Angela Bellini; Mathieu Chicard; Eve Lapouble; Valérie Combaret; Patricia Legoix-Né; Jean Michon; Trevor J. Pugh; Lori S. Hart; JulieAnn Rader; Edward F. Attiyeh; Jun S. Wei; Shile Zhang; Arlene Naranjo; Julie M. Gastier-Foster; Michael D. Hogarty; Shahab Asgharzadeh; Malcolm A. Smith; Jaime M. Guidry Auvil; Thomas B. K. Watkins; Danny A. Zwijnenburg; Marli E. Ebus; Peter van Sluis

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Cell | 2010

NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome

Michael Holzel; Sidong Huang; Jan Koster; Ingrid Øra; Arjan Lakeman; Huib N. Caron; Wouter Nijkamp; Jing Xie; Tom Callens; Shahab Asgharzadeh; Robert C. Seeger; Ludwine Messiaen; Rogier Versteeg; René Bernards

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Bioinformatics | 2008

Sparse representation and Bayesian detection of genome copy number alterations from microarray data

Roger Pique-Regi; Jordi Monso-Varona; Antonio Ortega; Robert C. Seeger; Timothy J. Triche; Shahab Asgharzadeh

MOTIVATION Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. METHODS First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). RESULTS The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). AVAILABILITY http://biron.usc.edu/~piquereg/GADA


Cancer Cell | 2009

ZNF423 Is Critically Required for Retinoic Acid-Induced Differentiation and Is a Marker of Neuroblastoma Outcome

Sidong Huang; Jamila Laoukili; Mirjam T. Epping; Jan Koster; Michael Holzel; Bart A. Westerman; Wouter Nijkamp; Akiko Hata; Shahab Asgharzadeh; Robert C. Seeger; Rogier Versteeg; Roderick L. Beijersbergen; René Bernards

Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.


Journal of Clinical Oncology | 2012

Clinical Significance of Tumor-Associated Inflammatory Cells in Metastatic Neuroblastoma

Shahab Asgharzadeh; Jill Salo; Lingyun Ji; André Oberthuer; Matthias Fischer; Frank Berthold; Michael Hadjidaniel; Cathy Wei-Yao Liu; Leonid S. Metelitsa; Roger Pique-Regi; Peter Wakamatsu; Judith G. Villablanca; Susan G. Kreissman; Katherine K. Matthay; Hiroyuki Shimada; Wendy B. London; Richard Sposto; Robert C. Seeger

PURPOSE Children diagnosed at age ≥ 18 months with metastatic MYCN-nonamplified neuroblastoma (NBL-NA) are at high risk for disease relapse, whereas those diagnosed at age < 18 months are nearly always cured. In this study, we investigated the hypothesis that expression of genes related to tumor-associated inflammatory cells correlates with the observed differences in survival by age at diagnosis and contributes to a prognostic signature. METHODS Tumor-associated macrophages (TAMs) in localized and metastatic neuroblastomas (n = 71) were assessed by immunohistochemistry. Expression of 44 genes representing tumor and inflammatory cells was quantified in 133 metastatic NBL-NAs to assess age-dependent expression and to develop a logistic regression model to provide low- and high-risk scores for predicting progression-free survival (PFS). Tumors from high-risk patients enrolled onto two additional studies (n = 91) served as independent validation cohorts. RESULTS Metastatic neuroblastomas had higher infiltration of TAMs than locoregional tumors, and metastatic tumors diagnosed in patients at age ≥ 18 months had higher expression of inflammation-related genes than those in patients diagnosed at age < 18 months. Expression of genes representing TAMs (CD33/CD16/IL6R/IL10/FCGR3) contributed to 25% of the accuracy of a novel 14-gene tumor classification score. PFS at 5 years for children diagnosed at age ≥ 18 months with NBL-NA with a low- versus high-risk score was 47% versus 12%, 57% versus 8%, and 50% versus 20% in three independent clinical trials, respectively. CONCLUSION These data suggest that interactions between tumor and inflammatory cells may contribute to the clinical metastatic neuroblastoma phenotype, improve prognostication, and reveal novel therapeutic targets.

Collaboration


Dive into the Shahab Asgharzadeh's collaboration.

Top Co-Authors

Avatar

Robert C. Seeger

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Richard Sposto

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Edward F. Attiyeh

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Javed Khan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon J. Diskin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Michael D. Hogarty

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Lingyun Ji

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge