Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaheen Dhanani is active.

Publication


Featured researches published by Shaheen Dhanani.


Journal of Applied Physiology | 2008

Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging

Micah J. Drummond; Hans C. Dreyer; Bart Pennings; Christopher S. Fry; Shaheen Dhanani; Edgar L. Dillon; Melinda Sheffield-Moore; Elena Volpi; Blake B. Rasmussen

Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.


The Journal of Physiology | 2009

Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis

Micah J. Drummond; Christopher S. Fry; Erin L. Glynn; Hans C. Dreyer; Shaheen Dhanani; Kyle L. Timmerman; Elena Volpi; Blake B. Rasmussen

Muscle protein synthesis and mTORC1 signalling are concurrently stimulated following muscle contraction in humans. In an effort to determine whether mTORC1 signalling is essential for regulating muscle protein synthesis in humans, we treated subjects with a potent mTORC1 inhibitor (rapamycin) prior to performing a series of high‐intensity muscle contractions. Here we show that rapamycin treatment blocks the early (1–2 h) acute contraction‐induced increase (∼40%) in human muscle protein synthesis. In addition, several downstream components of the mTORC1 signalling pathway were also blunted or blocked by rapamycin. For instance, S6K1 phosphorylation (Thr421/Ser424) was increased post‐exercise 6‐fold in the control group while being unchanged with rapamycin treatment. Furthermore, eEF2 phosphorylation (Thr56) was reduced by ∼25% post‐exercise in the control group but phosphorylation following rapamycin treatment was unaltered, indicating that translation elongation was inhibited. Rapamycin administration prior to exercise also reduced the ability of raptor to associate with mTORC1 during post‐exercise recovery. Surprisingly, rapamycin treatment prior to resistance exercise completely blocked the contraction‐induced increase in the phosphorylation of ERK1/2 (Thr202/Tyr204) and blunted the increase in MNK1 (Thr197/202) phosphorylation. However, the phosphorylation of a known target of MNK1, eIF4E (Ser208), was similar in both groups (P > 0.05) which is consistent with the notion that rapamycin does not directly inhibit MAPK signalling. We conclude that mTORC1 signalling is, in part, playing a key role in regulating the contraction‐induced stimulation of muscle protein synthesis in humans, while dual activation of mTORC1 and ERK1/2 stimulation may be required for full stimulation of human skeletal muscle protein synthesis.


Skeletal Muscle | 2011

Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis

Christopher S. Fry; Micah J. Drummond; Erin L. Glynn; Jared M. Dickinson; David M. Gundermann; Kyle L. Timmerman; Dillon K. Walker; Shaheen Dhanani; Elena Volpi; Blake B. Rasmussen

BackgroundSarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE) training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS) after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC)1 signaling and MPS response compared with young adults after acute RE.MethodsWe measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years) and 16 younger (27 ± 2 years) subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively.ResultsIncreased phosphorylation was seen only in the younger group (P< 0.05) for several key signaling proteins after exercise, including mammalian target of rapamycin (mTOR), ribosomal S6 kinase (S6K)1, eukaryotic initiation factor 4E-binding protein (4E-BP)1 and extracellular signal-regulated kinase (ERK)1/2, with no changes seen in the older group (P > 0.05). After exercise, MPS increased from baseline only in the younger group (P< 0.05), with MPS being significantly greater than that in the older group (P < 0.05).ConclusionsWe conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.


Journal of Applied Physiology | 2010

Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men

Christopher S. Fry; Erin L. Glynn; Micah J. Drummond; Kyle L. Timmerman; Satoshi Fujita; Takashi Abe; Shaheen Dhanani; Elena Volpi; Blake B. Rasmussen

The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.


Journal of Nutrition | 2011

Mammalian Target of Rapamycin Complex 1 Activation Is Required for the Stimulation of Human Skeletal Muscle Protein Synthesis by Essential Amino Acids

Jared M. Dickinson; Christopher S. Fry; Micah J. Drummond; David M. Gundermann; Dillon K. Walker; Erin L. Glynn; Kyle L. Timmerman; Shaheen Dhanani; Elena Volpi; Blake B. Rasmussen

The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.


Journal of Nutrition | 2010

Excess Leucine Intake Enhances Muscle Anabolic Signaling but Not Net Protein Anabolism in Young Men and Women

Erin L. Glynn; Christopher S. Fry; Micah J. Drummond; Kyle L. Timmerman; Shaheen Dhanani; Elena Volpi; Blake B. Rasmussen

Essential amino acids (EAA) stimulate skeletal muscle protein synthesis (MPS) in humans. Leucine may have a greater stimulatory effect on MPS than other EAA and/or decrease muscle protein breakdown (MPB). To determine the effect of 2 different leucine concentrations on muscle protein turnover and associated signaling, young men (n = 6) and women (n = 8) ingested 10 g EAA in 1 of 2 groups: composition typical of high quality proteins (CTRL; 1.8 g leucine) or increased leucine concentration (LEU; 3.5 g leucine). Participants were studied for 180 min postingestion. Fractional synthetic rate and leg phenylalanine and leucine kinetics were assessed on muscle biopsies using stable isotopic techniques. Signaling was determined by immunoblotting. Arterial leucine concentration and delivery to the leg increased in both groups and was significantly higher in LEU than in CTRL; however, transport into the muscle and intracellular availability did not differ between groups. MPS increased similarly in both groups 60 min postingestion. MPB decreased at 60 min only in LEU, but net muscle protein balance improved similarly. Components of mammalian target of rapamycin (mTOR) signaling were improved in LEU, but no changes were observed in ubiquitin-proteasome system signaling. Changes in light chain 3 and mTOR association with Unc-51-like kinase 1 indicate autophagy decreased more in LEU. We conclude that in 10 g of EAA, the leucine content typical of high quality proteins (~1.8 g) is sufficient to induce a maximal skeletal muscle protein anabolic response in young adults, but leucine may play a role in autophagy regulation.


Diabetes | 2010

Pharmacological Vasodilation Improves Insulin-Stimulated Muscle Protein Anabolism but Not Glucose Utilization in Older Adults

Kyle L. Timmerman; Jessica Lee; Satoshi Fujita; Shaheen Dhanani; Hans C. Dreyer; Christopher S. Fry; Micah J. Drummond; Melinda Sheffield-Moore; Blake B. Rasmussen; Elena Volpi

OBJECTIVE Skeletal muscle protein metabolism is resistant to the anabolic action of insulin in healthy, nondiabetic older adults. This defect is associated with impaired insulin-induced vasodilation and mTORC1 signaling. We hypothesized that, in older subjects, pharmacological restoration of insulin-induced capillary recruitment would improve the response of muscle protein synthesis and anabolism to insulin. RESEARCH DESIGN AND METHODS Twelve healthy, nondiabetic older subjects (71 ± 2 years) were randomized to two groups. Subjects were studied at baseline and during local infusion in one leg of insulin alone (Control) or insulin plus sodium nitroprusside (SNP) at variable rate to double leg blood flow. We measured leg blood flow by dye dilution; muscle microvascular perfusion with contrast enhanced ultrasound; Akt/mTORC1 signaling by Western blotting; and muscle protein synthesis, amino acid, and glucose kinetics using stable isotope methodologies. RESULTS There were no baseline differences between groups. Blood flow, muscle perfusion, phenylalanine delivery to the leg, and intracellular availability of phenylalanine increased significantly (P < 0.05) in SNP only. Akt phosphorylation increased in both groups but increased more in SNP (P < 0.05). Muscle protein synthesis and net balance (nmol · min−1 · 100 ml · leg−1) increased significantly (P < 0.05) in SNP (synthesis, 43 ± 6 to 129 ± 25; net balance, −16 ± 3 to 26 ± 12) but not in Control (synthesis, 41 ± 10 to 53 ± 8; net balance, −17 ± 3 to −2 ± 3). CONCLUSIONS Pharmacological enhancement of muscle perfusion and amino acid availability during hyperinsulinemia improves the muscle protein anabolic effect of insulin in older adults.


Journal of Applied Physiology | 2009

Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis

Micah J. Drummond; Mitsunori Miyazaki; Hans C. Dreyer; Bart Pennings; Shaheen Dhanani; Elena Volpi; Karyn A. Esser; Blake B. Rasmussen

Muscle growth is associated with an activation of the mTOR signaling pathway and satellite cell regulators. The purpose of this study was to determine whether 17 selected genes associated with mTOR/muscle protein synthesis and the satellite cells/myogenic program are differentially expressed in young and older human skeletal muscle at rest and in response to a potent anabolic stimulus [resistance exercise + essential amino acid ingestion (RE+EAA)]. Twelve male subjects (6 young, 6 old) completed a bout of heavy resistance exercise. Muscle biopsies were obtained before and at 3 and 6 h post RE+EAA. Subjects ingested leucine-enriched essential amino acids at 1 h postexercise. mRNA expression was determined using qRT-PCR. At rest, hVps34 mRNA was elevated in the older subjects (P < 0.05) while there was a tendency for levels of myoD, myogenin, and TSC2 mRNA to be higher than young. The anabolic stimulus (RE+EAA) altered mRNAs associated with mTOR regulation. Notably, REDD2 decreased in both age groups (P < 0.05) but the expression of Rheb mRNA increased only in the young. Finally, cMyc mRNA was elevated (P < 0.05) in both young and old at 6 h post RE+EAA. Furthermore, RE+EAA also increased expression of several mRNAs associated with satellite function in the young (P < 0.05), while expression of these mRNAs did not change in the old. We conclude that several anabolic genes in muscle are more responsive in young men post RE+EAA. Our data provide new insights into the regulation of genes important for transcription and translation in young and old human skeletal muscle post RE+EAA.


The American Journal of Clinical Nutrition | 2012

A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults

Kyle L. Timmerman; Shaheen Dhanani; Erin L. Glynn; Christopher S. Fry; Micah J. Drummond; Kristofer Jennings; Blake B. Rasmussen; Elena Volpi

BACKGROUND Nutrient stimulation of muscle protein anabolism is blunted with aging and may contribute to the development and progression of sarcopenia in older adults. This is likely due to insulin resistance of protein metabolism and/or endothelial dysfunction with a reduction in nutritive flow, both of which can be improved by aerobic exercise. OBJECTIVE Our objective was to determine whether increasing physical activity can enhance the muscle protein anabolic effect of essential amino acid (EAA) + sucrose intake in older subjects by improving nutritive flow and/or insulin signaling. DESIGN Using a randomized crossover design, we measured in older subjects [n = 6, 70 ± 3 y of age, BMI (in kg/m2) of 25 ± 1] the acute effects of increasing physical activity with aerobic exercise, as compared with normal sedentary lifestyle, on the response of blood flow, microvascular perfusion, insulin signaling, and muscle protein kinetics to EAA+sucrose intake. RESULTS No differences between treatment groups were found in the basal state. The change from the basal state in blood flow, muscle perfusion, phenylalanine delivery, net balance, and muscle protein synthesis during the consumption of EAA+sucrose was significantly higher after the exercise than after the control treatment (P < 0.05). Insulin signaling increased during EAA+sucrose ingestion in both groups (P < 0.05). CONCLUSIONS Our data indicate that a prior bout of aerobic exercise increases the anabolic effect of nutrient intake in older adults. This effect appears to be mediated by an exercise-induced improvement in nutrient-stimulated vasodilation and nutrient delivery to muscle rather than to improved insulin signaling. This trial was registered at clinicaltrials.gov as NCT00690534.


Journal of Nutrition | 2009

Essential Amino Acids Increase MicroRNA-499, -208b, and -23a and Downregulate Myostatin and Myocyte Enhancer Factor 2C mRNA Expression in Human Skeletal Muscle

Micah J. Drummond; Erin L. Glynn; Christopher S. Fry; Shaheen Dhanani; Elena Volpi; Blake B. Rasmussen

Essential amino acids (EAA) stimulate muscle protein synthesis in humans. However, little is known about whether microRNAs (miRNA) and genes associated with muscle growth are expressed differently following EAA ingestion. Our purpose in this experiment was to determine whether miRNA and growth-related mRNA expressed in skeletal muscle are up- or downregulated in humans following the ingestion of EAA. We hypothesized that EAA would alter miRNA expression in skeletal muscle as well as select growth-related genes. Muscle biopsies were obtained from the vastus lateralis of 7 young adult participants (3 male, 4 female) before and 3 h after ingesting 10 g of EAA. Muscle samples were analyzed for muscle miRNA (miR-499, -208b, -23a, -1, -133a, and -206) and muscle-growth related genes [MyoD1, myogenin, myostatin, myocyte enhancer factor C (MEF2C), follistatin-like-1 (FSTL1), histone deacytylase 4, and serum response factor mRNA] before and after EAA ingestion using real-time PCR. Following EAA ingestion, miR-499, -208b, -23a, -1, and pri-miR-206 expression increased (P < 0.05). The muscle-growth genes MyoD1 and FSTL1 mRNA expression increased (P < 0.05), and myostatin and MEF2C mRNA were downregulated following EAA ingestion (P < 0.05). We conclude that miRNA and growth-related genes expressed in skeletal muscle are rapidly altered within hours following EAA ingestion. Further work is needed to determine whether these miRNA are post-transcriptional regulators of growth-related genes following an anabolic stimulus.

Collaboration


Dive into the Shaheen Dhanani's collaboration.

Top Co-Authors

Avatar

Elena Volpi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Blake B. Rasmussen

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher S. Fry

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Erin L. Glynn

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kyle L. Timmerman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Gundermann

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge