Shahid Jameel
International Centre for Genetic Engineering and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shahid Jameel.
Journal of Biosciences | 2008
Vivek Chandra; Shikha Taneja; Manjula Kalia; Shahid Jameel
The hepatitis E virus (HEV) is a small RNA virus and the etiological agent for hepatitis E, a form of acute viral hepatitis. The virus has a feco-oral transmission cycle and is transmitted through environmental contamination, mainly through drinking water. Recent studies on the isolation of HEV-like viruses from animal species also suggest zoonotic transfer of the virus. The absence of small animal models of infection and efficient cell culture systems has precluded virological studies on the replication cycle and pathogenesis of HEV. A vaccine against HEV has undergone successful clinical testing and diagnostic tests are available. This review describes HEV epidemiology, clinical presentation, pathogenesis, molecular virology and the host response to HEV infection. The focus is on published literature in the past decade.
Virus Research | 2011
Imran Ahmad; R. Prasida Holla; Shahid Jameel
Abstract This review details the molecular virology of the hepatitis E virus (HEV). While replicons and in vitro infection systems have recently become available, a lot of information on HEV has been generated through comparisons with better-studied positive-strand RNA viruses and through subgenomic expression of viral open reading frames. These models are now being verified with replicon and infection systems. We provide here the current knowledge on the HEV genome and its constituent proteins – ORF1, ORF2 and ORF3. Based on the available information, we also modify the existing model of the HEV life cycle.
Journal of Virology | 2000
Subrat Kumar Panda; I. H. Ansari; H. Durgapal; S. Agrawal; Shahid Jameel
ABSTRACT Hepatitis E virus (HEV) is an important etiological agent of epidemic and sporadic hepatitis, which is endemic to the Indian subcontinent and prevalent in most of the developing parts of the world. The infection is often associated with acute liver failure and high mortality, particularly in pregnant women. In order to develop methods of intervention, it is essential to understand the biology of the virus. This is particularly important as no reliable in vitro culture system is available. We have constructed a cDNA clone encompassing the complete HEV genome from independently characterized subgenomic fragments of an Indian epidemic isolate. Transfection studies were carried out with HepG2 cells using in vitro-transcribed RNA from this full-length HEV cDNA clone. The presence of negative-sense RNA, indicative of viral replication, was demonstrated in the transfected cells by strand-specific reverse transcription-PCR and slot blot hybridization. The viral proteins pORF2 and pORF3 and processed components of the pORF1 polyprotein (putative methyltransferase, helicase, and RNA-dependent RNA polymerase) were identified in the transfected cells by metabolic pulse-labeling with [35S]methionine-cysteine, followed by immunoprecipitation with respective antibodies. The expression of viral proteins in the transfected cells was also demonstrated by immunofluorescence microscopy. Viral replication was detected in the transfected cells up to 33 days posttransfection (six passages). The culture supernatant from the transfected cells was able to produce HEV infection in a rhesus monkey (Macaca mulatta) following intravenous injection, indicating the generation of viable HEV particles following transfection of cells with in vitro-synthesized genomic RNA. This transient cell culture model using in vitro-transcribed RNA should facilitate our understanding of HEV biology.
Biochemical Journal | 2004
Milan Surjit; Boping Liu; Shahid Jameel; Vincent T. K. Chow; Sunil K. Lal
In March 2003, a novel coronavirus was isolated from patients exhibiting atypical pneumonia, and was subsequently proven to be the causative agent of the disease now referred to as SARS (severe acute respiratory syndrome). The complete genome of the SARS-CoV (SARS coronavirus) has since been sequenced. The SARS-CoV nucleocapsid (SARS-CoV N) protein shares little homology with other members of the coronavirus family. In the present paper, we show that SARS-CoV N is capable of inducing apoptosis of COS-1 monkey kidney cells in the absence of growth factors by down-regulating ERK (extracellular-signal-regulated kinase), up-regulating JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) pathways, and affecting their downstream effectors. SARS-CoV N expression also down-regulated phospho-Akt and Bcl-2 levels, and activated caspases 3 and 7. However, apoptosis was independent of the p53 and Fas signalling pathways. Furthermore, activation of the p38 MAPK pathway was found to induce actin reorganization in cells devoid of growth factors. At the cytoskeletal level, SARS-CoV N down-regulated FAK (focal adhesion kinase) activity and also down-regulated fibronectin expression. This is the first report showing the ability of the N protein of SARS-CoV to induce apoptosis and actin reorganization in mammalian cells under stressed conditions.
Journal of Virology | 2009
Manjula Kalia; Vivek Chandra; Sheikh Abdul Rahman; Deepak Sehgal; Shahid Jameel
ABSTRACT The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an ∼56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors.
Journal of Immunology | 2005
Ashutosh Chaudhry; Suman R. Das; Amjad Hussain; Satyajit Mayor; Anna George; Vineeta Bal; Shahid Jameel; Satyajit Rath
The Nef protein of HIV-1 is essential for its pathogenicity and is known to down-regulate MHC expression on infected cell surfaces. We now show that Nef also redistributes the costimulatory molecules CD80 and CD86 away from the cell surface in the human monocytic U937 cell line as well as in mouse macrophages and dendritic cells. Furthermore, HIV-1-infected U937 cells and human blood-derived macrophages show a similar loss of cell surface CD80 and CD86. Nef colocalizes with MHC class I (MHCI), CD80, and CD86 in intracellular compartments, and binds to both mouse and human CD80 and CD86. Some Nef mutants defective in MHCI down-modulation, including one from a clinical isolate, remain capable of down-modulating CD80 and CD86. Nef-mediated loss of surface CD80/CD86 is functionally significant, because it leads to compromised activation of naive T cells. This novel immunomodulatory role of Nef may be of potential importance in explaining the correlations of macrophage-tropism and Nef with HIV-1 pathogenicity and immune evasion.
Journal of Virology | 2008
Vivek Chandra; Anindita Kar-Roy; Sudha Kumari; Satyajit Mayor; Shahid Jameel
ABSTRACT The hepatitis E virus (HEV) causes acute viral hepatitis, but its characterization is hampered by the lack of an efficient in vitro infection system that can be used to study the effects of HEV proteins on cellular processes. Previous studies suggest that the viral ORF3 protein (pORF3) is essential for infection in vivo and is likely to modulate the host response. Here, we report that pORF3 localizes to early and recycling endosomes and causes a delay in the postinternalization trafficking of epidermal growth factor receptor (EGFR) to late endosomes/lysosomes. The cytoplasmic phosphorylated signal transducer and activator of transcription 3 (pSTAT3) proteins require growth factor receptor endocytosis for their translocation from the cytoplasm to nucleus. Consequently, lower levels of pSTAT3 were found in the nuclei of ORF3-expressing Huh7 human hepatoma cells stimulated with EGF. This results in downregulation of the acute-phase response, a major determinant of inflammation in the host. We propose that through its effects on EGFR trafficking, pORF3 prolongs endomembrane growth factor signaling and promotes cell survival. The effects on STAT3 translocation would result in a reduced inflammatory response. Both of these events are likely to contribute positively to viral replication.
Seminars in Liver Disease | 2013
R. Holla; Imran Ahmad; Zulfazal Ahmad; Shahid Jameel
Hepatitis E virus (HEV) is the causative agent of hepatitis E. It is a nonenveloped virus with a ∼7.2 kilobases positive-stranded RNA genome. The molecular virology of HEV is getting better understood with the development of replicons and in vitro infection systems, and the discovery of related viruses that infect animal species other than humans. This review focuses on the virology of HEV and updates the current knowledge on the HEV genome and its constituent proteins--ORF1, ORF2, and ORF3, and the viral life cycle.
Journal of Biological Chemistry | 2004
Anindita Kar-Roy; Hasan Korkaya; Ruchi Oberoi; Sunil K. Lal; Shahid Jameel
The hepatitis E virus causes acute viral hepatitis endemic in much of the developing world and is a serious public health problem. However, due to the lack of an in vitro culture system or a small animal model, its biology and pathogenesis are poorly understood. We have shown earlier that the ORF3 protein (pORF3) of hepatitis E virus activates ERK, a member of the MAPK superfamily. Here we have explored the mechanism of pORF3-mediated ERK activation and demonstrated it to be independent of the Raf/MEK pathway. Using biochemical assays, yeast two-hybrid analysis, and intracellular fluorescence resonance energy transfer we showed that pORF3 binds Pyst1, a prototypic member of the ERK-specific MAPK phosphatase. The binding regions in the two proteins were mapped to the N terminus of pORF3 and a central portion of Pyst1. Expression of pORF3 protected ERK from the inhibitory effects of ectopically expressed Pyst1. This is the first example of a viral protein regulating ERK activation by inhibition of its cognate dual specificity phosphatase.
Journal of Virology | 2007
Milan Surjit; Shahid Jameel; Sunil K. Lal
ABSTRACT Hepatitis E virus (HEV) is a positive-strand RNA virus that is prevalent in much of the developing world. ORF2 is the major capsid protein of HEV. Although ORF2 is an N-linked glycoprotein, it is abundantly located in the cytoplasm in addition to having membrane and surface localization. The mechanism by which ORF2 protein obtains access to the cytoplasm is unknown. In this report, we prove that initially all ORF2 protein is present in the endoplasmic reticulum and a fraction of it becomes retrotranslocated to the cytoplasm. The ability of ORF2 to be retrotranslocated is dependent on its glycosylation status and follows the canonical dislocation pathway. However, in contrast to general substrates of the dislocation pathway, retrotranslocated ORF2 protein is not a substrate of the 26S proteasome complex and is readily detectable in the cytoplasm in the absence of any protease inhibitor, suggesting that the retrotranslocated protein is stable in the cytoplasm. This study thus defines the pathway by which ORF2 obtains access to the cytoplasm.
Collaboration
Dive into the Shahid Jameel's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs