Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahidul M. Islam is active.

Publication


Featured researches published by Shahidul M. Islam.


Nature Structural & Molecular Biology | 2014

Conformational dynamics of ligand-dependent alternating access in LeuT

Kelli Kazmier; Shruti Sharma; Matthias Quick; Shahidul M. Islam; Benoît Roux; Harel Weinstein; Jonathan A. Javitch; Hassane S. Mchaourab

The leucine transporter (LeuT) from Aquifex aeolicus is a bacterial homolog of neurotransmitter/sodium symporters (NSSs) that catalyze reuptake of neurotransmitters at the synapse. Crystal structures of wild-type and mutants of LeuT have been interpreted as conformational states in the coupled transport cycle. However, the mechanistic identities inferred from these structures have not been validated, and the ligand-dependent conformational equilibrium of LeuT has not been defined. Here, we used distance measurements between spin-label pairs to elucidate Na+- and leucine-dependent conformational changes on the intracellular and extracellular sides of the transporter. The results identify structural motifs that underlie the isomerization of LeuT between outward-facing, inward-facing and occluded states. The conformational changes reported here present a dynamic picture of the alternating-access mechanism of LeuT and NSSs that is different from the inferences reached from currently available structural models.


Journal of Physical Chemistry B | 2013

Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme.

Shahidul M. Islam; Richard A. Stein; Hassane S. Mchaourab; Benoît Roux

DEER (double electron-electron resonance) is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of distance histograms between pairs of nitroxide spin-labels linked to a protein in a native-like solution environment. However, exploiting the huge amount of information provided by ESR/DEER histograms to refine structural models is extremely challenging. In this study, a restrained ensemble (RE) molecular dynamics (MD) simulation methodology is developed to address this issue. In RE simulation, the spin-spin distance distribution histograms calculated from a multiple-copy MD simulation are enforced, via a global ensemble-based energy restraint, to match those obtained from ESR/DEER experiments. The RE simulation is applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in T4 lysozyme (T4L). The rotamer population distribution along the five dihedral angles connecting the nitroxide ring to the protein backbone is determined and shown to be consistent with available information from X-ray crystallography. For the purpose of structural refinement, the concept of a simplified nitroxide dummy spin-label is designed and parametrized on the basis of these all-atom RE simulations with explicit solvent. It is demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures, while simple harmonic distance restraints are unsuccessful. This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement.


Cell | 2016

Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating.

Doreen Matthies; Olivier Dalmas; Mario J. Borgnia; Pawel K. Dominik; Alan Merk; Prashant Rao; Bharat Reddy; Shahidul M. Islam; Alberto Bartesaghi; Eduardo Perozo; Sriram Subramaniam

CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.


Journal of Physical Chemistry B | 2013

Restrained-Ensemble Molecular Dynamics Simulations Based on Distance Histograms from Double Electron-Electron Resonance Spectroscopy

Benoît Roux; Shahidul M. Islam

DEER (double electron-electron resonance) spectroscopy is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of spin-spin distance histograms between site-directed nitroxide label sites on a protein in their native environment. However, incorporating ESR/DEER data in structural refinement is challenging because the information from the large number of distance histograms is complex and highly coupled. Here, a novel restrained-ensemble molecular dynamics simulation method is developed to incorporate the information from multiple ESR/DEER distance histograms simultaneously. Illustrative tests on three coupled spin-labels inserted in T4 lysozyme show that the method efficiently imposes the experimental distance distribution in this system. Different rotameric states of the χ1 and χ2 dihedrals in the spin-labels are also explored by restrained ensemble simulations. Using this method, it is hoped that experimental restraints from ESR/DEER experiments can be used to refine structural properties of biological systems.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1.

Kelli Kazmier; Shruti Sharma; Shahidul M. Islam; Benoît Roux; Hassane S. Mchaourab

Significance Na+-coupled symporters use the cellular Na+ gradient to power transport of physiologically important molecules across the lipid membrane. However, the mechanism by which binding and dissociation of Na+ drive transport remains undefined. This work investigated the Na+/hydantoin transporter Mhp1, a member of the LeuT-fold class of transporters, to describe the conformations sampled during its transport cycle and elucidate the ligand-induced shifts in its conformational equilibrium. The results of this study suggest that Mhp1 isomerization between inward- and outward-facing conformations are Na+-independent and that coupling to the Na+ gradient occurs through modulation of substrate affinity by Na+ coordination. A previously unidentified model of Mhp1 transport defined by ligand-independent equilibrium fluctuations emerges from this work, offering a new perspective on Na+-coupled symport in the LeuT-fold. Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na+-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na+/leucine transporter LeuT, our results suggest that Na+ binding at the conserved second Na+ binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating

H. Raghuraman; Shahidul M. Islam; Soumi Mukherjee; Benoît Roux; Eduardo Perozo

Significance C-type inactivation gating in K+ channels plays an important role in controlling the firing patterns of excitable cells and is fundamental in determining the length and frequency of the cardiac action potential. At a molecular level, toxins, blockers, and metal ions bind to the outer vestibule and modulate the functional behavior of K+ channels. Using KcsA, we show that the shuttling between the inactivated and conductive states of K+ channels is accompanied by changes in local outer vestibule dynamics, in the absence of large conformational changes. The altered structural and hydration dynamics of the outer vestibule appear to be likely and important modulators of selectivity filter gating transitions in K+ channels. In K+ channels, the selectivity filter, pore helix, and outer vestibule play a crucial role in gating mechanisms. The outer vestibule is an important structurally extended region of KcsA in which toxins, blockers, and metal ions bind and modulate the gating behavior of K+ channels. Despite its functional significance, the gating-related structural dynamics at the outer vestibule are not well understood. Under steady-state conditions, inactivating WT and noninactivating E71A KcsA stabilize the nonconductive and conductive filter conformations upon opening the activation gate. Site-directed fluorescence polarization of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled outer vestibule residues shows that the outer vestibule of open/conductive conformation is highly dynamic compared with the motional restriction experienced by the outer vestibule during inactivation gating. A wavelength-selective fluorescence approach shows a change in hydration dynamics in inactivated and noninactivated conformations, and supports a possible role of restricted/bound water molecules in C-type inactivation gating. Using a unique restrained ensemble simulation method, along with distance measurements by EPR, we show that, on average, the outer vestibule undergoes a modest backbone conformational change during its transition to various functional states, although the structural dynamics of the outer vestibule are significantly altered during activation and inactivation gating. Taken together, our results support the role of a hydrogen bond network behind the selectivity filter, side-chain conformational dynamics, and water molecules in the gating mechanisms of K+ channels.


Advances in Protein Chemistry | 2014

CHARMM-GUI PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues

Sunhwan Jo; Xi Cheng; Shahidul M. Islam; Lei Huang; Huan Rui; Allen Zhu; Hui Sun Lee; Yifei Qi; Wei Han; Kenno Vanommeslaeghe; Alexander D. MacKerell; Benoît Roux; Wonpil Im

CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.


Journal of Physical Chemistry B | 2015

Simulating the Distance Distribution between Spin-Labels Attached to Proteins

Shahidul M. Islam; Benoît Roux

EPR/DEER spectroscopy is playing an increasingly important role in the characterization of the conformational states of proteins. In this study, force field parameters for the bifunctional spin-label (RX) used in EPR/DEER are parametrized and tested with molecular dynamics (MD) simulations. The dihedral angles connecting the Cα atom of the backbone to the nitroxide ring moiety of the RX spin-label attached to i and i + 4 positions in a polyalanine α-helix agree very well with those observed in the X-ray crystallography. Both RXi,i+4 and RXi,i+3 are more rigid than the monofunctional spin-label (R1) commonly used in EPR/DEER, while RXi,i+4 is more rigid and causes less distortion in a protein backbone than RXi,i+3. Simplified dummy spin-label models with a single effective particle representing the RXi,i+3 and RXi,i+4 are also developed and parametrized from the all-atom simulations. MD simulations with dummy spin-labels (MDDS) provide distance distributions that can be directly compared to distance distributions obtained from EPR/DEER to rapidly assess if a hypothetical three-dimensional (3D) structural model is consistent with experiment. The dummy spin-labels can also be used in the restrained-ensemble MD (re-MD) simulations to carry out structural refinement of 3D models. Applications of this methodology to T4 lysozyme, KCNE1, and LeuT are shown to provide important insights about their conformational dynamics.


PLOS Computational Biology | 2015

Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

Rong Shen; Wei Han; Giacomo Fiorin; Shahidul M. Islam; Klaus Schulten; Benoît Roux

The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.


Journal of the American Chemical Society | 2018

Synthesis of Allylic Alcohols via Cu-Catalyzed Hydrocarbonylative Coupling of Alkynes with Alkyl Halides

Li Jie Cheng; Shahidul M. Islam; Neal P. Mankad

We have developed a modular procedure to synthesize allylic alcohols from tertiary, secondary, and primary alkyl halides and alkynes via a Cu-catalyzed hydrocarbonylative coupling and 1,2-reduction tandem sequence. The use of tertiary alkyl halides as electrophiles was found to enable the synthesis of various allylic alcohols bearing α-quaternary carbon centers in good yield with high 1,2-reduction selectivity. Mechanistic studies that suggested a different pathway was operative with tertiary alkyl halides compared with primary and secondary alkyl halides for generating the key copper(III) oxidative adduct. For tertiary electrophiles, an acyl halide likely forms via radical atom transfer carbonylation. The preference for 1,2-reduction over 1,4-reduction of α,β-unsaturated ketones bearing tertiary substituents was rationalized using density functional theory transition state analysis. On the basis of this computational model, the coupling method was extended to primary and secondary alkyl iodide electrophiles by using internal alkynes with aryl substituents, providing trisubstituted allylic alcohols in high yield with good regioselectivity.

Collaboration


Dive into the Shahidul M. Islam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashanul Haque

Sultan Qaboos University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Merk

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge