Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahneen Sandhu is active.

Publication


Featured researches published by Shahneen Sandhu.


The New England Journal of Medicine | 2015

DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer

Joaquin Mateo; Suzanne Carreira; Shahneen Sandhu; Susana Miranda; Helen Mossop; Raquel Perez-Lopez; Daniel Nava Rodrigues; Dan R. Robinson; Aurelius Omlin; Nina Tunariu; Gunther Boysen; Nuria Porta; Penny Flohr; Alexa Gillman; Ines Figueiredo; Claire Paulding; George Seed; Suneil Jain; Christy Ralph; Andrew Protheroe; Syed A. Hussain; Robert Jones; Tony Elliott; Ursula McGovern; Diletta Bianchini; Jane Goodall; Zafeiris Zafeiriou; Chris T. Williamson; Roberta Ferraldeschi; Ruth Riisnaes

BACKGROUND Prostate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibition with olaparib. METHODS We conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor biopsies. RESULTS Overall, 50 patients were enrolled; all had received prior treatment with docetaxel, 49 (98%) had received abiraterone or enzalutamide, and 29 (58%) had received cabazitaxel. Sixteen of 49 patients who could be evaluated had a response (33%; 95% confidence interval, 20 to 48), with 12 patients receiving the study treatment for more than 6 months. Next-generation sequencing identified homozygous deletions, deleterious mutations, or both in DNA-repair genes--including BRCA1/2, ATM, Fanconis anemia genes, and CHEK2--in 16 of 49 patients who could be evaluated (33%). Of these 16 patients, 14 (88%) had a response to olaparib, including all 7 patients with BRCA2 loss (4 with biallelic somatic loss, and 3 with germline mutations) and 4 of 5 with ATM aberrations. The specificity of the biomarker suite was 94%. Anemia (in 10 of the 50 patients [20%]) and fatigue (in 6 [12%]) were the most common grade 3 or 4 adverse events, findings that are consistent with previous studies of olaparib. CONCLUSIONS Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate. (Funded by Cancer Research UK and others; ClinicalTrials.gov number, NCT01682772; Cancer Research UK number, CRUK/11/029.).


Lancet Oncology | 2013

The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial

Shahneen Sandhu; William R. Schelman; George Wilding; Victor Moreno; Richard D. Baird; Susana Miranda; Lucy Hylands; Ruth Riisnaes; Martin Forster; Aurelius Omlin; Nathan Kreischer; Khin Thway; Heidrun Gevensleben; Linda Sun; John W. Loughney; Manash Shankar Chatterjee; Carlo Toniatti; Christopher L. Carpenter; Robert Iannone; Stan B. Kaye; Johann S. de Bono; Robert M Wenham

BACKGROUND Poly(ADP-ribose) polymerase (PARP) is implicated in DNA repair and transcription regulation. Niraparib (MK4827) is an oral potent, selective PARP-1 and PARP-2 inhibitor that induces synthetic lethality in preclinical tumour models with loss of BRCA and PTEN function. We investigated the safety, tolerability, maximum tolerated dose, pharmacokinetic and pharmacodynamic profiles, and preliminary antitumour activity of niraparib. METHODS In a phase 1 dose-escalation study, we enrolled patients with advanced solid tumours at one site in the UK and two sites in the USA. Eligible patients were aged at least 18 years; had a life expectancy of at least 12 weeks; had an Eastern Cooperative Oncology Group performance status of 2 or less; had assessable disease; were not suitable to receive any established treatments; had adequate organ function; and had discontinued any previous anticancer treatments at least 4 weeks previously. In part A, cohorts of three to six patients, enriched for BRCA1 and BRCA2 mutation carriers, received niraparib daily at ten escalating doses from 30 mg to 400 mg in a 21-day cycle to establish the maximum tolerated dose. Dose expansion at the maximum tolerated dose was pursued in 15 patients to confirm tolerability. In part B, we further investigated the maximum tolerated dose in patients with sporadic platinum-resistant high-grade serous ovarian cancer and sporadic prostate cancer. We obtained blood, circulating tumour cells, and optional paired tumour biopsies for pharmacokinetic and pharmacodynamic assessments. Toxic effects were assessed by common toxicity criteria and tumour responses ascribed by Response Evaluation Criteria in Solid Tumors (RECIST). Circulating tumour cells and archival tumour tissue in prostate patients were analysed for exploratory putative predictive biomarkers, such as loss of PTEN expression and ETS rearrangements. This trial is registered with ClinicalTrials.gov, NCT00749502. FINDINGS Between Sept 15, 2008, and Jan 14, 2011, we enrolled 100 patients: 60 in part A and 40 in part B. 300 mg/day was established as the maximum tolerated dose. Dose-limiting toxic effects reported in the first cycle were grade 3 fatigue (one patient given 30 mg/day), grade 3 pneumonitis (one given 60 mg/day), and grade 4 thrombocytopenia (two given 400 mg/day). Common treatment-related toxic effects were anaemia (48 patients [48%]), nausea (42 [42%]), fatigue (42 [42%]), thrombocytopenia (35 [35%]), anorexia (26 [26%]), neutropenia (24 [24%]), constipation (23 [23%]), and vomiting (20 [20%]), and were predominantly grade 1 or 2. Pharmacokinetics were dose proportional and the mean terminal elimination half-life was 36·4 h (range 32·8-46·0). Pharmacodynamic analyses confirmed PARP inhibition exceeded 50% at doses greater than 80 mg/day and antitumour activity was documented beyond doses of 60 mg/day. Eight (40% [95% CI 19-64]) of 20 BRCA1 or BRCA2 mutation carriers with ovarian cancer had RECIST partial responses, as did two (50% [7-93]) of four mutation carriers with breast cancer. Antitumour activity was also reported in sporadic high-grade serous ovarian cancer, non-small-cell lung cancer, and prostate cancer. We recorded no correlation between loss of PTEN expression or ETS rearrangements and measures of antitumour activity in patients with prostate cancer. INTERPRETATION A recommended phase 2 dose of 300 mg/day niraparib is well tolerated. Niraparib should be further assessed in inherited and sporadic cancers with homologous recombination DNA repair defects and to target PARP-mediated transcription in cancer. FUNDING Merck Sharp and Dohme.


Nature Reviews Cancer | 2010

Envisioning the future of early anticancer drug development

Timothy A. Yap; Shahneen Sandhu; Paul Workman; Johann S. de Bono

The development of novel molecularly targeted cancer therapeutics remains slow and expensive with many late-stage failures. There is an urgent need to accelerate this process by improving early clinical anticancer drug evaluation through modern and rational trial designs that incorporate predictive, pharmacokinetic, pharmacodynamic, pharmacogenomic and intermediate end-point biomarkers. In this article, we discuss current approaches and propose strategies that will potentially maximize benefit to patients and expedite the regulatory approvals of new anticancer drugs.


Journal of Clinical Oncology | 2015

Circulating Tumor Cell Biomarker Panel As an Individual-Level Surrogate for Survival in Metastatic Castration-Resistant Prostate Cancer

Howard I. Scher; Glenn Heller; Arturo Molina; Gerhardt Attard; Daniel C. Danila; Xiaoyu Jia; Weimin Peng; Shahneen Sandhu; David Olmos; Ruth Riisnaes; Robert McCormack; Tomasz Burzykowski; Thian Kheoh; Martin Fleisher; Marc Buyse; Johann S. de Bono

PURPOSE Trials in castration-resistant prostate cancer (CRPC) need new clinical end points that are valid surrogates for survival. We evaluated circulating tumor cell (CTC) enumeration as a surrogate outcome measure. PATIENTS AND METHODS Examining CTCs alone and in combination with other biomarkers as a surrogate for overall survival was a secondary objective of COU-AA-301, a multinational, randomized, double-blind phase III trial of abiraterone acetate plus prednisone versus prednisone alone in patients with metastatic CRPC previously treated with docetaxel. The biomarkers were measured at baseline and 4, 8, and 12 weeks, with 12 weeks being the primary measure of interest. The Prentice criteria were applied to test candidate biomarkers as surrogates for overall survival at the individual-patient level. RESULTS A biomarker panel using CTC count and lactate dehydrogenase (LDH) level was shown to satisfy the four Prentice criteria for individual-level surrogacy. Twelve-week surrogate biomarker data were available for 711 patients. The abiraterone acetate plus prednisone and prednisone-alone groups demonstrated a significant survival difference (P = .034); surrogate distribution at 12 weeks differed by treatment (P < .001); the discriminatory power of the surrogate to predict mortality was high (weighted c-index, 0.81); and adding the surrogate to the model eliminated the treatment effect on survival. Overall, 2-year survival of patients with CTCs < 5 (low risk) versus patients with CTCs ≥ 5 cells/7.5 mL of blood and LDH > 250 U/L (high risk) at 12 weeks was 46% and 2%, respectively. CONCLUSION A biomarker panel containing CTC number and LDH level was shown to be a surrogate for survival at the individual-patient level in this trial of abiraterone acetate plus prednisone versus prednisone alone for patients with metastatic CRPC. Additional trials are ongoing to validate the findings.


CA: A Cancer Journal for Clinicians | 2011

Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic.

Timothy A. Yap; Shahneen Sandhu; Craig P. Carden; Johann S. de Bono

Poly(ADP‐ribose) polymerase (PARP) is an attractive antitumor target because of its vital role in DNA repair. The homologous recombination (HR) DNA repair pathway is critical for the repair of DNA double‐strand breaks and HR deficiency leads to a dependency on error‐prone DNA repair mechanisms, with consequent genomic instability and oncogenesis. Tumor‐specific HR defects may be exploited through a synthetic lethal approach for the application of anticancer therapeutics, including PARP inhibitors. This theory proposes that targeting genetically defective tumor cells with a specific molecular therapy that inhibits its synthetic lethal gene partner should result in selective tumor cell killing. The demonstration of single‐agent antitumor activity and the wide therapeutic index of PARP inhibitors in BRCA1 and BRCA2 mutation carriers with advanced cancers provide strong evidence for the clinical application of this approach. Emerging data also indicate that PARP inhibitors may be effective in sporadic cancers bearing HR defects, supporting a substantially wider role for PARP inhibitors. Drugs targeting this enzyme are now in pivotal clinical trials in patients with sporadic cancers. In this article, the evidence supporting this antitumor synthetic lethal strategy with PARP inhibitors is reviewed, evolving resistance mechanisms and potential molecular predictive biomarker assays are discussed, and the future development of these agents is envisioned. CA Cancer J Clin 2011.


Annals of Oncology | 2016

Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab

Alexander M. Menzies; Douglas B. Johnson; Sangeetha Ramanujam; Victoria Atkinson; Annie Wong; John J. Park; Jennifer L. McQuade; Alexander N. Shoushtari; Katy K. Tsai; Zeynep Eroglu; Oliver Klein; Jessica C. Hassel; Jeffrey A. Sosman; Alexander Guminski; Ryan J. Sullivan; Antoni Ribas; Matteo S. Carlino; Michael A. Davies; Shahneen Sandhu

Background Anti-PD-1 antibodies (anti-PD-1) have clinical activity in a number of malignancies. All clinical trials have excluded patients with significant preexisting autoimmune disorders (ADs) and only one has included patients with immune-related adverse events (irAEs) with ipilimumab. We sought to explore the safety and efficacy of anti-PD-1 in such patients. Patients and methods Patients with advanced melanoma and preexisting ADs and/or major immune-related adverse events (irAEs) with ipilimumab (requiring systemic immunosuppression) that were treated with anti-PD-1 between 1 July 2012 and 30 September 2015 were retrospectively identified. Results One hundred and nineteen patients from 13 academic tertiary referral centers were treated with anti-PD-1. In patients with preexisting AD (N = 52), the response rate was 33%. 20 (38%) patients had a flare of AD requiring immunosuppression, including 7/13 with rheumatoid arthritis, 3/3 with polymyalgia rheumatica, 2/2 with Sjogrens syndrome, 2/2 with immune thrombocytopaenic purpura and 3/8 with psoriasis. No patients with gastrointestinal (N = 6) or neurological disorders (N = 5) flared. Only 2 (4%) patients discontinued treatment due to flare, but 15 (29%) developed other irAEs and 4 (8%) discontinued treatment. In patients with prior ipilimumab irAEs requiring immunosuppression (N = 67) the response rate was 40%. Two (3%) patients had a recurrence of the same ipilimumab irAEs, but 23 (34%) developed new irAEs (14, 21% grade 3-4) and 8 (12%) discontinued treatment. There were no treatment-related deaths. Conclusions In melanoma patients with preexisting ADs or major irAEs with ipilimumab, anti-PD-1 induced relatively frequent immune toxicities, but these were often mild, easily managed and did not necessitate discontinuation of therapy, and a significant proportion of patients achieved clinical responses. The results support that anti-PD-1 can be administered safely and can achieve clinical benefit in patients with preexisting ADs or prior major irAEs with ipilimumab.


The Journal of Pathology | 2013

Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor

Louise J. Barber; Shahneen Sandhu; Lina Chen; James Campbell; Iwanka Kozarewa; Kerry Fenwick; Ioannis Assiotis; Daniel Nava Rodrigues; Jorge S. Reis-Filho; Victor Moreno; Joaquin Mateo; L. Rhoda Molife; Johann S. de Bono; Stan B. Kaye; Christopher J. Lord; Alan Ashworth

PARP inhibitors (PARPi) for the treatment of BRCA1 or BRCA2 deficient tumours are currently the focus of seminal clinical trials exploiting the concept of synthetic lethality. Although clinical resistance to PARPi has been described, the mechanism underlying this has not been elucidated. Here, we investigate tumour material from patients who had developed resistance to the PARPi olaparib, subsequent to showing an initial clinical response. Massively parallel DNA sequencing of treatment‐naive and post‐olaparib treatment biopsies identified tumour‐specific BRCA2 secondary mutations in olaparib‐resistant metastases. These secondary mutations restored full‐length BRCA2 protein, and most likely cause olaparib resistance by re‐establishing BRCA2 function in the tumour cells. Copyright


Leukemia | 2015

Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation

Sarah Kamel; L Horton; Loic Ysebaert; Marie Levade; Kate Burbury; S Tan; Merrole Cole-Sinclair; John V. Reynolds; Robin Filshie; Steven Schischka; Amit Khot; Shahneen Sandhu; Michael J. Keating; Harshal Nandurkar; Constantine S. Tam

The BTK (Bruton’s tyrosine kinase) inhibitor ibrutinib is associated with an increased risk of bleeding. A previous study reported defects in collagen- and adenosine diphosphate (ADP)-dependent platelet responses when ibrutinib was added ex vivo to patient samples. Whereas the collagen defect is expected given the central role of BTK in glycoprotein VI signaling, the ADP defect lacks a mechanistic explanation. In order to determine the real-life consequences of BTK platelet blockade, we performed light transmission aggregometry in 23 patients receiving ibrutinib treatment. All patients had reductions in collagen-mediated platelet aggregation, with a significant association between the degree of inhibition and the occurrence of clinical bleeding or bruising (P=0.044). This collagen defect was reversible on drug cessation. In contrast to the previous ex vivo report, we found no in vivo ADP defects in subjects receiving standard doses of ibrutinib. These results establish platelet light transmission aggregometry as a method for gauging, at least qualitatively, the severity of platelet impairment in patients receiving ibrutinib treatment.


Cancer Research | 2015

UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas

Stephen Q. Wong; Kelly Waldeck; Ismael A. Vergara; Jan Schröder; Jason Madore; James S. Wilmott; Andrew J. Colebatch; De Paoli-Iseppi R; Jason Li; Richard Lupat; Timothy Semple; Gisela Mir Arnau; Andrew Fellowes; Leonard Jh; George Hruby; Graham J. Mann; John F. Thompson; Carleen Cullinane; Meredith L. Johnston; Mark Shackleton; Shahneen Sandhu; David Bowtell; Ricky W. Johnstone; Stephen B. Fox; Grant A. McArthur; Anthony T. Papenfuss; Richard A. Scolyer; Anthony J. Gill; Rodney J. Hicks; Richard W. Tothill

Merkel cell carcinoma (MCC) is an uncommon, but highly malignant, cutaneous tumor. Merkel cell polyoma virus (MCV) has been implicated in a majority of MCC tumors; however, viral-negative tumors have been reported to be more prevalent in some geographic regions subject to high sun exposure. While the impact of MCV and viral T-antigens on MCC development has been extensively investigated, little is known about the etiology of viral-negative tumors. We performed targeted capture and massively parallel DNA sequencing of 619 cancer genes to compare the gene mutations and copy number alterations in MCV-positive (n = 13) and -negative (n = 21) MCC tumors and cell lines. We found that MCV-positive tumors displayed very low mutation rates, but MCV-negative tumors exhibited a high mutation burden associated with a UV-induced DNA damage signature. All viral-negative tumors harbored mutations in RB1, TP53, and a high frequency of mutations in NOTCH1 and FAT1. Additional mutated or amplified cancer genes of potential clinical importance included PI3K (PIK3CA, AKT1, PIK3CG) and MAPK (HRAS, NF1) pathway members and the receptor tyrosine kinase FGFR2. Furthermore, looking ahead to potential therapeutic strategies encompassing immune checkpoint inhibitors such as anti-PD-L1, we also assessed the status of T-cell-infiltrating lymphocytes (TIL) and PD-L1 in MCC tumors. A subset of viral-negative tumors exhibited high TILs and PD-L1 expression, corresponding with the higher mutation load within these cancers. Taken together, this study provides new insights into the underlying biology of viral-negative MCC and paves the road for further investigation into new treatment opportunities.


Melanoma Research | 2014

Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma

Samantha Bowyer; Aparna D. Rao; Megan Lyle; Shahneen Sandhu; Grant A. McArthur; Jeanette Raleigh; Rodney J. Hicks; Michael Millward

BRAF and MEK inhibitors are not established treatments for non-V600 mutation-positive metastatic melanoma. We carried out a retrospective analysis of efficacy and safety in four patients with BRAF K601E and one patient with L597Q mutation-positive metastatic melanoma treated with the MEK inhibitor trametinib. Three patients achieved a RECIST partial response, including the patient with an L597Q mutation. Paired biopsies available in one of the five patients showed reduced phospho-ERK signalling and this corresponded to a metabolic response on 18F-fluorodeoxyglucose-PET scanning. Trametinib toxicity was manageable. Trametinib has antitumour activity in patients with BRAF K601E and L597Q mutation-positive metastatic melanoma.

Collaboration


Dive into the Shahneen Sandhu's collaboration.

Top Co-Authors

Avatar

Johann S. de Bono

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Grant A. McArthur

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Joaquin Mateo

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria Atkinson

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

David Olmos

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Diletta Bianchini

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Aurelius Omlin

University of St. Gallen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Miranda

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge