Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahram Ghanaati is active.

Publication


Featured researches published by Shahram Ghanaati.


Biomaterials | 2009

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds

Sabine Fuchs; Shahram Ghanaati; Carina Orth; Mike Barbeck; Marlen Kolbe; Alexander Hofmann; Markus Eblenkamp; Manuela E. Gomes; Rui L. Reis; Charles James Kirkpatrick

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cultures with pOB on the vascularization process by OEC in vivo were tested by subcutaneous implantation of Matrigel plugs containing both, OEC and pOB, and resulted in OEC-derived blood vessels integrated into the host tissue and anastomosed to the vascular supply. In addition, morphometric analysis of the vascularization process by OEC indicated a better performance of OEC in the co-cultures with primary osteoblasts compared to monocultures of OEC. The contribution of OEC to vascular structures and the beneficial effect of the co-culture with primary human osteoblasts on the vascularization in vivo was additionally proven by subcutaneous implantation of pre-cellularized and pre-cultured SPCL constructs. OEC contributed to the vascular structures, by generating autogenic vessels or by incorporation into chimeric vessels consisting of both, human and mouse endothelial cells. The current data highlight the vasculogenic potential of OEC for bone tissue engineering applications and indicate a beneficial influence of constructs including both osteoblasts and endothelial cells for vascularization strategies.


Biomaterials | 2010

The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature

Ronald E. Unger; Shahram Ghanaati; Carina Orth; Anne Sartoris; Mike Barbeck; Sven Halstenberg; Antonella Motta; Claudio Migliaresi; C. James Kirkpatrick

The survival and functioning of a bone biomaterial upon implantation requires a rapidly forming and stably functioning vascularization that connects the implant to the recipient. We have previously shown that human microcapillary endothelial cells (HDMEC) and primary human osteoblast cells (HOS) in coculture on various 3-D bone biomaterial scaffolds rapidly distribute and self-assemble into a morphological structure resembling bone tissue. Endothelial cells form microcapillary-like structures containing a lumen and these were intertwined between the osteoblast cells and the biomaterial. This tissue-like self-assembly occurred in the absence of exogenously added angiogenic stimuli or artificial matrices. The purpose of this study was to determine whether this in vitro pre-formed microvasculature persists and functions in vivo and to determine how the host responds to the cell-containing scaffolds. The scaffolds with cocultures were implanted into immune-deficient mice and compared to scaffolds without cells or with HDMEC alone. Histological evaluation and immunohistochemical staining with human-specific antibodies of materials removed 14 days after implantation demonstrated that the in vitro pre-formed microcapillary structures were present on the silk fibroin scaffolds and showed a perfused lumen that contained red blood cells. This proved anastomosis with the host vasculature. Chimeric vessels in which HDMEC were integrated with the hosts ingrowing (murine) capillaries were also observed. No HDMEC-derived microvessel structures or chimeric vessels were observed on implanted silk fibroin when precultured with HDMEC alone. In addition, there was migration of the host (murine) vasculature into the silk fibroin scaffolds implanted with cocultures, whereas silk fibroin alone or silk fibroin precultured only with HDMEC were nearly devoid of ingrowing host microcapillaries. Therefore, not only do the in vitro pre-formed microcapillaries in a coculture survive and anastomose with the host vasculature to become functioning microcapillaries after implantation, the coculture also stimulates the host capillaries to rapidly grow into the scaffold to vascularize the implanted material. Thus, this coculture-based pre-vascularization of a biomaterial implant may have great potential in the clinical setting to treat large bone defects.


Biomaterials | 2009

Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells

Sabine Fuchs; Xin Jiang; Harald Schmidt; Eva Dohle; Shahram Ghanaati; Carina Orth; Alexander Hofmann; Antonella Motta; Claudio Migliaresi; Charles James Kirkpatrick

For successful bone regeneration tissue engineered bone constructs combining both aspects, namely a high osteogenic potential and a rapid connection to the vascular network are needed. In this study we assessed the formation of pre-vascular structures by human outgrowth endothelial cells (OEC) from progenitors in the peripheral blood and the osteogenic differentiation of primary human osteoblasts (pOB) on micrometric silk fibroin scaffolds. The rational was to gain more insight into the dynamic processes involved in the differentiation and functionality of both cell types depending on culture time in vitro. Vascular tube formation by OEC was assessed quantitatively at one and 4 weeks of culture. In parallel, we assessed the temporal changes in cell ratios by flow cytometry and in the marker profiles of endothelial and osteogenic markers by quantitative real-time PCR. In terms of OEC, we observed an increase in tube length, tube area, number of nodes and number of vascular meshes within a culture period of 4 weeks, but a decrease in endothelial markers in real-time PCR. At the same time early osteogenic markers were downregulated, while marker expression associated with progressing mineralized matrix was upregulated in later stages of the culture. In addition, deposition of matrix components, such as collagen type I, known as a pro-angiogenic substrate for endothelial cells, appeared to increase with time indicated by immunohistochemistry. In summary, the study suggests a progressing maturation of the tissue construct with culture time which seems to be not effected by culture conditions mainly designed for outgrowth endothelial cells.


Biomaterials | 2009

Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers

Shahram Ghanaati; Matthew J. Webber; Ronald E. Unger; Carina Orth; James F. Hulvat; Sarah E. Kiehna; Mike Barbeck; Angela Rasic; Samuel I. Stupp; C. James Kirkpatrick

Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies.


Acta Biomaterialia | 2010

Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.

Shahram Ghanaati; Mike Barbeck; Carina Orth; Ines Willershausen; Benjamin W. Thimm; Christiane Hoffmann; Angela Rasic; Robert Sader; Ronald E. Unger; Fabian Peters; C. James Kirkpatrick

In this study the tissue reaction to five different β-tricalcium phosphate (β-TCP)-based bone substitute materials differing only in size, shape and porosity was analyzed over 60 days, at 3, 10, 15, 30 and 60 days after implantation. Using the subcutaneous implantation model in Wistar rats both the inflammatory response within the implantation bed and the resulting vascularization of the biomaterials were qualitatively and quantitatively assessed by means of standard and special histological staining methods. The data from this study showed that all investigated β-TCP bone substitutes induced the formation of multinucleated giant cells. Changes in size, shape and porosity influenced the integration of the biomaterials within the implantation bed and the formation of tartrate-resistant acid phosphatase (TRAP)-positive and TRAP-negative multinucleated giant cells, as well as the rate of vascularization. While a high porosity generally allowed cell and fiber in-growth within the center of the bone substitute, a lower porosity resulted in a mosaic-like integration of the materials, with the granules serving as place holders. The number of multinucleated giant cells located in the implantation bed positively correlated with the vascularization rate. These data emphasize that all biomaterials investigated were capable of inducing the formation of TRAP-positive multinucleated giant cells as a sign of biomaterial stability. Furthermore, these cells directly influenced vascularization by secretion of vascular endothelial growth factor (VEGF), as well as other chemokines. Based on these findings, the role of multinucleated giant cells in the foreign body reaction to biomaterials might need to be reconsidered. This study demonstrates that variations in the physical properties of a bone substitute material clearly influence the (extent of the) inflammatory reaction and its consequences.


Biomedical Materials | 2012

The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics

Shahram Ghanaati; Mike Barbeck; Rainer Detsch; Ulrike Deisinger; Ulrike Hilbig; Vera Rausch; Robert Sader; Ronald E. Unger; G. Ziegler; Charles James Kirkpatrick

Bone substitute material properties such as granule size, macroporosity, microporosity and shape have been shown to influence the cellular inflammatory response to a bone substitute material. Keeping these parameters constant, the present study analyzed the in vivo tissue reaction to three bone substitute materials (granules) with different chemical compositions (hydroxyapatite (HA), beta-tricalcium phosphate (TCP) and a mixture of both with a HA/TCP ratio of 60/40 wt%). Using a subcutaneous implantation model in Wistar rats for up to 30 days, tissue reactions, including the induction of multinucleated giant cells and the extent of implantation bed vascularization, were assessed using histological and histomorphometrical analyses. The results showed that the chemical composition of the bone substitute material significantly influenced the cellular response. When compared to HA, TCP attracted significantly greater multinucleated giant cell formations within the implantation bed. Furthermore, the vascularization of the implantation bed of TCP was significantly higher than that of HA implantation beds. The biphasic bone substitute group combined the properties of both groups. Within the first 15 days, high giant cell formation and vascularization rates were observed, which were comparable to the TCP-group. However, after 15 days, the tissue reaction, i.e. the extent of multinucleated giant cell formation and vascularization, was comparable to the HA-group. In conclusion, the combination of both compounds HA and TCP may be a useful combination for generating a scaffold for rapid vascularization and integration during the early time points after implantation and for setting up a relatively slow degradation. Both of these factors are necessary for successful bone tissue regeneration.


Journal of Oral Implantology | 2014

Advanced Platelet-Rich Fibrin: A New Concept for Cell-Based Tissue Engineering by Means of Inflammatory Cells

Shahram Ghanaati; Patrick Booms; Anna Orlowska; Alica Kubesch; Jonas Lorenz; Jim Rutkowski; Constantin A. Landes; Robert Sader; Charles James Kirkpatrick; Joseph Choukroun

Choukrouns platelet-rich fibrin (PRF) is obtained from blood without adding anticoagulants. In this study, protocols for standard platelet-rich fibrin (S-PRF) (2700 rpm, 12 minutes) and advanced platelet-rich fibrin (A-PRF) (1500 rpm, 14 minutes) were compared to establish by histological cell detection and histomorphometrical measurement of cell distribution the effects of the centrifugal force (speed and time) on the distribution of cells relevant for wound healing and tissue regeneration. Immunohistochemistry for monocytes, T and B -lymphocytes, neutrophilic granulocytes, CD34-positive stem cells, and platelets was performed on clots produced from four different human donors. Platelets were detected throughout the clot in both groups, although in the A-PRF group, more platelets were found in the distal part, away from the buffy coat (BC). T- and B-lymphocytes, stem cells, and monocytes were detected in the surroundings of the BC in both groups. Decreasing the rpm while increasing the centrifugation time in the A-PRF group gave an enhanced presence of neutrophilic granulocytes in the distal part of the clot. In the S-PRF group, neutrophils were found mostly at the red blood cell (RBC)-BC interface. Neutrophilic granulocytes contribute to monocyte differentiation into macrophages. Accordingly, a higher presence of these cells might be able to influence the differentiation of host macrophages and macrophages within the clot after implantation. Thus, A-PRF might influence bone and soft tissue regeneration, especially through the presence of monocytes/macrophages and their growth factors. The relevance and feasibility of this tissue-engineering concept have to be proven through in vivo studies.


Biomaterials | 2011

Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.

Shahram Ghanaati; Ronald E. Unger; Matthew J. Webber; Mike Barbeck; Carina Orth; Jenny A. Kirkpatrick; Patrick Booms; Antonella Motta; Claudio Migliaresi; Robert Sader; C. James Kirkpatrick

Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs were implanted in SCID mice, a rapid and thorough vascularization of the scaffold by the host blood capillaries occurred. This profound response was not seen for the silk fibroin scaffold alone. Moreover, when the pre-cultivation time of human osteoblasts was reduced from 14 days to only 24 h, the significant effect these cells exerted on vascularization rate in vivo was still detectable. From these studies, we conclude that matrix and soluble factors produced by osteoblasts can serve to instruct host endothelial cells to migrate, proliferate, and initiate the process of scaffold vascularization. This finding represents a potential paradigm shift for the field of tissue engineering, especially in bone, as traditional strategies to enhance scaffold vascularization have focused on endovascular cells and regarded osteoblasts primarily as cell targets for mineralization. In addition, the migration of host macrophages and multinucleated giant cells into the scaffold was also found to influence the vascularization of the biomaterial. Therefore, the robust effect on scaffold vascularization seen by pre-culturing with osteoblasts appears to occur in concert with the pro-angiogenic stimuli arising from host immune cells.


Biomedical Materials | 2011

Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic

Shahram Ghanaati; Markus Schlee; Matthew J. Webber; Ines Willershausen; Mike Barbeck; Ela Balic; Christoph Görlach; Samuel I. Stupp; Robert Sader; C. James Kirkpatrick

This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.


Journal of Tissue Engineering and Regenerative Medicine | 2011

Rapid vascularization of starch–poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts

Shahram Ghanaati; Sabine Fuchs; Matthew J. Webber; Carina Orth; Mike Barbeck; Manuela E. Gomes; Rui L. Reis; C. James Kirkpatrick

The successful integration of in vitro‐generated tissues is dependent on adequate vascularization in vivo. Human outgrowth endothelial cells (OECs) isolated from the mononuclear cell fraction of peripheral blood represent a potent population of circulating endothelial progenitors that could provide a cell source for rapid anastomosis and scaffold vascularization. Our previous work with these cells in co‐culture with primary human osteoblasts has demonstrated their potential to form perfused vascular structures within a starch–poly(caprolactone) biomaterial in vivo. In the present study, we demonstrate the ability of OECs to form perfused vascular structures as early as 48 h following subcutaneous implantation of the biomaterial in vivo. The number of OEC‐derived vessels increased throughout the study, an effect that was independent of the OEC donor. This finding of rapid and thorough OEC‐mediated scaffold vascularization demonstrates the great potential for OEC‐based strategies to promote vascularization in tissue engineering. OECs have the potential to contribute to host‐derived scaffold vascularization, and formed vascular structures at a similar density as those arising from the host. Additionally, immunohistochemical evidence demonstrated the close interaction between OECs and the co‐cultured osteoblasts. In addition to the known paracrine activity osteoblasts have in modulating angiogenesis of co‐cultured OECs, we demonstrate the potential of osteoblasts to provide additional structural support for OEC‐derived vessels, perhaps acting in a pericyte‐like role. Copyright

Collaboration


Dive into the Shahram Ghanaati's collaboration.

Top Co-Authors

Avatar

Robert Sader

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Mike Barbeck

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas Lorenz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Joseph Choukroun

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Al-Maawi

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Anna Orlowska

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge