Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahzad N. Syed is active.

Publication


Featured researches published by Shahzad N. Syed.


Journal of Biological Chemistry | 2008

Phosphoinositide 3-Kinases γ and δ, Linkers of Coordinate C5a Receptor-Fcγ Receptor Activation and Immune Complex-induced Inflammation

Stephanie Konrad; Syed R. Ali; Kristina Wiege; Shahzad N. Syed; Linda Engling; Roland P. Piekorz; Emilio Hirsch; Bernd Nürnberg; Reinhold Schmidt; J. Engelbert Gessner

Fcγ receptors (FcγR) and the C5a receptor (C5aR) are key effectors of the acute inflammatory response to IgG immune complexes (IC). Their coordinated activation is critical in IC-induced diseases, although the significance of combined signaling by these two different receptor classes in tissue injury is unclear. Here we used the mouse model of the passive reverse lung Arthus reaction to define their requirements for distinct phosphoinositide 3-kinase (PI3K) activities in vivo. We show that genetic deletion of class IB PI3Kγ abrogates C5aR signaling that is crucial for FcγR-mediated activation of lung macrophages. Thus, in PI3Kγ-/- mice, IgG IC-induced FcγR regulation, cytokine release, and neutrophil recruitment were blunted. Notably, however, C5a production occurred normally in PI3Kγ-/- mice but was impaired in PI3Kδ-/- mice. Consequently, class IA PI3Kδ deficiency caused resistance to acute IC lung injury. These results demonstrate that PI3Kγ and PI3Kδ coordinate the inflammatory effects of C5aR and FcγR and define PI3Kδ as a novel and essential element of FcγR signaling in the generation of C5a in IC disease.


Journal of Biological Chemistry | 2008

PI3Kgamma and PI3Kdelta: Linkers of coordinate C5aR-FcgammaR activation and immune complex-induced inflammation

Stephanie Konrad; Syed R. Ali; Kristina Wiege; Shahzad N. Syed; Linda Engling; Roland P. Piekorz; Emilio Hirsch; Bernd Nürnberg; Reinhold Schmidt; J. Engelbert Gessner

Fcγ receptors (FcγR) and the C5a receptor (C5aR) are key effectors of the acute inflammatory response to IgG immune complexes (IC). Their coordinated activation is critical in IC-induced diseases, although the significance of combined signaling by these two different receptor classes in tissue injury is unclear. Here we used the mouse model of the passive reverse lung Arthus reaction to define their requirements for distinct phosphoinositide 3-kinase (PI3K) activities in vivo. We show that genetic deletion of class IB PI3Kγ abrogates C5aR signaling that is crucial for FcγR-mediated activation of lung macrophages. Thus, in PI3Kγ-/- mice, IgG IC-induced FcγR regulation, cytokine release, and neutrophil recruitment were blunted. Notably, however, C5a production occurred normally in PI3Kγ-/- mice but was impaired in PI3Kδ-/- mice. Consequently, class IA PI3Kδ deficiency caused resistance to acute IC lung injury. These results demonstrate that PI3Kγ and PI3Kδ coordinate the inflammatory effects of C5aR and FcγR and define PI3Kδ as a novel and essential element of FcγR signaling in the generation of C5a in IC disease.


Journal of Experimental Medicine | 2017

S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β.

Benjamin Weichand; Rüdiger Popp; Sarah Dziumbla; Javier Mora; Elisabeth Strack; Eiman Elwakeel; Ann-Christin Frank; Klaus Scholich; Sandra Pierre; Shahzad N. Syed; Catherine Olesch; Julia Ringleb; Bilge Ören; Claudia Döring; Rajkumar Savai; Michaela Jung; Andreas von Knethen; Bodo Levkau; Ingrid Fleming; Andreas Weigert; Bernhard Brüne

Metastasis is the primary cause of cancer death. The inflammatory tumor microenvironment contributes to metastasis, for instance, by recruiting blood and lymph vessels. Among tumor-infiltrating immune cells, tumor-associated macrophages (TAMs) take a center stage in promoting both tumor angiogenesis and metastatic spread. We found that genetic deletion of the S1P receptor 1 (S1pr1) alone in CD11bhi CD206+ TAMs infiltrating mouse breast tumors prevents pulmonary metastasis and tumor lymphangiogenesis. Reduced lymphangiogenesis was also observed in the nonrelated methylcholanthrene-induced fibrosarcoma model. Transcriptome analysis of isolated TAMs from both entities revealed reduced expression of the inflammasome component Nlrp3 in S1PR1-deficient TAMs. Macrophage-dependent lymphangiogenesis in vitro was triggered upon inflammasome activation and required both S1PR1 signaling and IL-1&bgr; production. Finally, NLRP3 expression in tumor-infiltrating macrophages correlated with survival, lymph node invasion, and metastasis of mammary carcinoma patients. Conceptually, our study indicates an unappreciated role of the NLRP3 inflammasome in promoting metastasis via the lymphatics downstream of S1PR1 signaling in macrophages.


Advances in Experimental Medicine and Biology | 2016

Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression

Andreas Weigert; Javier Mora; Divya Sekar; Shahzad N. Syed; Bernhard Brüne

Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.


Antioxidants & Redox Signaling | 2017

Macrophage NOS2 in Tumor Leukocytes

Bernhard Brüne; Nadine Courtial; Nathalie Dehne; Shahzad N. Syed; Andreas Weigert

SIGNIFICANCE Leukocytes and especially macrophages are a major cellular constituent of the tumor mass. The tumor microenvironment not only determines their activity but in turn these cells also contribute to tumor initiation and progression. Recent Advances: Proinflammatory stimulated macrophages upregulate inducible nitric oxide synthase (NOS2) and produce high steady-state NO concentrations. NO provokes tumor cell death by initiating apoptosis and/or necrosis. Mechanisms may comprise p53 accumulation, immunestimulatory activities, and an increased efficacy of chemo- and/or radiotherapy. However, the potential cytotoxic activity of macrophages often is compromised in the tumor microenvironment and instead a protumor activity of macrophages dominates. Contributing factors are signals generated by viable and dying tumor cells, attraction and activation of myeloid-derived suppressor cells, and hypoxia. Limited oxygen availability not only attenuates NOS2 activity but also causes accumulation of hypoxia-inducible factors 1 and 2 (HIF-1/HIF-2). Activation of the HIF system is tightly linked to NO formation and affects the expression of macrophage phenotype markers that in turn add to tumor progression. CRITICAL ISSUES To make use of the cytotoxic arsenal of activated macrophages directed against tumor cells, it will be critical to understand how, when, and where these innate immune responses are blocked and whether it will be possible to reinstall their full capacity to kill tumor cells. FUTURE DIRECTIONS Low-dose irradiation or proinflammatory activation of macrophages in the tumor microenvironment may open options to boost NOS2 expression and activity and to initiate immunestimulatory features of NO that may help to restrict tumor growth. Antioxid. Redox Signal. 26, 1023-1043.


Inflammation | 2018

The Pyrazole Derivative BTP2 Attenuates IgG Immune Complex-induced Inflammation

Georgios Sogkas; Eduard Rau; Faranaz Atschekzei; Shahzad N. Syed; Reinhold E. Schmidt

Store-operated calcium entry (SOCE) is the most common mode of calcium influx in non-excitable cells, including immune cells. The two STIM isoforms mediate SOCE as well as Fc receptor (FcR)—downstream activation of macrophages and mast cells—which appears to be relevant in vivo, in models of antibody-dependent tissue injury and allergy. Hence, the pathway of SOCE may be a therapeutic target for treatment of immune complex (IC)-mediated autoimmunity and allergic asthma. The pyrazole derivative, BTP2 is an efficient inhibitor of SOCE, which has already been shown to attenuate allergic inflammation. However, its effect on Fc gamma receptor (FcγR) signaling and IC-induced tissue injury had not yet been studied. Here, we show that BTP2 is a potent inhibitor of SOCE in primary macrophages, blocking FcγR-mediated responses. To investigate the effect of inhibition of SOCE in IC-mediated tissue injury, we induced reverse passive Arthus reaction to IgG immune complexes in the skin and lungs of BTP2- or control-treated mice. Treatment with BTP2 resulted in markedly attenuated inflammation in both the skin and the lungs. Our findings indicate the involvement of SOCE in FcγR-mediated responses in vitro and in vivo and suggest that BTP2-mediated inhibition of SOCE may have a therapeutic potential on IC-mediated autoimmunity.


European Journal of Immunology | 2018

C5aR activation in the absence of C5a: A new disease mechanism of autoimmune hemolytic anemia in mice

Shahzad N. Syed; Eduard Rau; Mareen Ziegelmann; Georgios Sogkas; Bernhard Brüne; Reinhold E. Schmidt

IgG Fc receptors (FcγRs) and the C5a anaphylatoxin receptor (C5aR) were identified as key regulators of type II autoimmune injury in mice. However, and with respect to C5aR, the relative importance of C5a for IgG autoantibody‐induced cellular destruction remained unclear. Using an experimental model of autoimmune hemolytic anemia (AIHA), we here report marked differences in the development of AIHA between mice lacking C5aR and C5‐deficient (Hc0) strain, indicating a limited role of C5 in this type of C5aR‐regulated disease. Ex‐vivo‐analyses of liver homogenates from anemic Hc0 mice demonstrate C5a‐independent C5aR activation, upregulation of FcγR expression and amplification of erythrophagocytosis by macrophages. As assessed by pharmacological inhibition studies, targeting of C5aR, but not of C5, is effective in treating experimental AIHA. Collectively, these results define a previously unrecognized disease mechanism of C5aR activation in AIHA that does not necessarily involve C5 and C5a.


Mediators of Inflammation | 2017

S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1β or Lipocalin-2

Shahzad N. Syed; Michaela Jung; Andreas Weigert; Bernhard Brüne

A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis.


OncoImmunology | 2018

IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors

Sahil Gupta; Arpit Jain; Shahzad N. Syed; Ryan G. Snodgrass; Beatrice Pflüger-Müller; Matthias S. Leisegang; Andreas Weigert; Ralf P. Brandes; Ingo Ebersberger; Bernhard Brüne; Dmitry Namgaladze

ABSTRACT Macrophages in the tumor microenvironment respond to complex cytokine signals. How these responses shape the phenotype of tumor-associated macrophages (TAMs) is incompletely understood. Here we explored how cytokines of the tumor milieu, interleukin (IL)-6 and IL-4, interact to influence target gene expression in primary human monocyte-derived macrophages (hMDMs). We show that dual stimulation with IL-4 and IL-6 synergistically modified gene expression. Among the synergistically induced genes are several targets with known pro-tumorigenic properties, such as CC-chemokine ligand 18 (CCL18), transforming growth factor alpha (TGFA) or CD274 (programmed cell death 1 ligand 1 (PD-L1)). We found that transcription factors of the signal transducer and activator of transcription (STAT) family, STAT3 and STAT6 bind regulatory regions of synergistically induced genes in close vicinity. STAT3 and STAT6 co-binding further induces the basic leucine zipper ATF-like transcription factor (BATF), which participates in synergistic induction of target gene expression. Functional analyses revealed increased MCF-7 and MDA-MB 231 tumor cell motility in response to conditioned media from co-treated hMDMs compared to cells incubated with media from single cytokine-treated hMDMs. Flow cytometric analysis of T cell populations upon co-culture with hMDMs polarized by different cytokines indicated that dual stimulation promoted immunosuppressive properties of hMDMs in a PD-L1-dependent manner. Analysis of clinical data revealed increased expression of BATF together with TAM markers in tumor stroma of breast cancer patients as compared to normal breast tissue stroma. Collectively, our findings suggest that IL-4 and IL-6 cooperate to alter the human macrophage transcriptome, endowing hMDMs with pro-tumorigenic properties.


Archive | 2013

STIM1 is essential for Fcreceptor activation and autoimmune inflammation

Attila Braun; J. Engelbert Gessner; David Varga-Szabo; Shahzad N. Syed; Stephanie Konrad; David Stegner; Reinhold E. Schmidt; Bernhard Nieswandt

Collaboration


Dive into the Shahzad N. Syed's collaboration.

Top Co-Authors

Avatar

Bernhard Brüne

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Weigert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge