Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shai Efrati is active.

Publication


Featured researches published by Shai Efrati.


PLOS ONE | 2013

Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury - Randomized Prospective Trial

Rahav Boussi-Gross; Haim Golan; Gregori Fishlev; Yair Bechor; Olga Volkov; Jacob Bergan; Mony Friedman; Dan Hoofien; Nathan Shlamkovitch; Eshel Ben-Jacob; Shai Efrati

Background Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. Methods and Findings The trial population included 56 mTBI patients 1–5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. “Mindstreams” was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. Conclusions HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. Trial Registration ClinicalTrials.gov NCT00715052


Diabetes Technology & Therapeutics | 2012

The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients.

Shlomit Koren; Lital Shemesh-Bar; Amit Tirosh; Ronit Koren Peleg; Sylvia Berman; Ramzia Abu Hamad; Shlomo Vinker; Ahuva Golik; Shai Efrati

AIM This study evaluated the effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipid profile, oxidative stress, and high-sensitivity C-reactive protein (hsCRP) in type 2 diabetes mellitus patients. SUBJECTS AND METHODS Forty diabetes patients, inadequately controlled on metformin, were randomly assigned to either sitagliptin (100 mg/day) or glibenclamide (5 mg/day) for 3 months. Following a 1-month washout period, a crossover switch from glibenclamide to sitagliptin and vice versa was performed for an additional 3 months. Arterial stiffness, 24-h ambulatory blood pressure monitoring, lipids, hsCRP, glycated hemoglobin, fasting glucose, STAT-8-isoprostane (a measure of oxidative stress), body mass index (BMI), and waist circumference were measured at baseline and at 3 months with each of the study drugs. RESULTS Thirty-four patients completed the study. Glibenclamide had a better glucose-lowering effect than sitagliptin, but this was associated with more hypoglycemic events. BMI increased following glibenclamide treatment, whereas sitagliptin proved weight-neutral. Mean BMI gain was +0.5±1.0 kg/m(2) for glibenclamide versus -0.01±0.9 kg/m(2) for sitagliptin (P<0.001). Triglyceride levels significantly dropped following sitagliptin, although they remained unaltered after glibenclamide treatment. Mean triglyceride decrease was -18.4±45 mg/mL after sitagliptin but -0.2±57 mg/dL following glibenclamide treatment (P=0.018). There was no change in low-density lipoprotein, high-density lipoprotein, arterial stiffness, blood pressure monitoring, hsCRP, or STAT-8-isoprostane with each of the study drugs. CONCLUSIONS Sitagliptin, but not glibenclamide, demonstrated a significant beneficial effect on BMI and triglyceride levels. However, arterial stiffness, blood pressure, oxidative stress, and inflammatory status were not significantly affected by adding sitagliptin or glibenclamide to metformin-treated type 2 diabetes patients.


Nephrology Dialysis Transplantation | 2012

Effect of captopril treatment on recuperation from ischemia/reperfusion-induced acute renal injury

Shai Efrati; Sylvia Berman; Ramzia Abu Hamad; Yariv Siman-Tov; Eduard Ilgiyaev; Ilia Maslyakov; Joshua Weissgarten

BACKGROUND Ischemia/reperfusion triggers acute kidney injury (AKI), mainly via aggravating hypoxia, oxidative stress, inflammation and renin-angiotensin system (RAS) activation. We investigated the role of angiotensin-converting enzyme (ACE) inhibition on the progression of AKI in a rat model of ischemia/reperfusion. METHODS Ninety-nine Sprague-Dawley rats were subjected to 1 h ischemia/reperfusion and/or left unilateral nephrectomy, with concurrent intraperitoneal implantation of Alzet pump. Via this pump, they were continuously infused with captopril 0.5 mg/kg/day, captopril 2 mg/kg/day or saline. The rats were sacrificed following 24, 48 or 168 h. Blood samples, 24-h urine collections and kidneys were allocated, to evaluate renal function, angiotensin-II, nitric oxide (NO), apoptosis, hypoxia, oxidative stress and inflammation. RESULTS Serum creatinine and cystatin-C significantly increased in ischemic rats, coinciding with histopathologic intrarenal damage, decreased NO, augmented angiotensin-II, interleukin (IL)-6, IL-10, transforming growth factor-beta. At the acute reperfusion stage, captopril prevented excessive angiotensin-II synthesis, ameliorated renal dysfunction, inhibited intrarenal inflammation and improved histopathologic findings. Most of the renoprotective effects of captopril were limited predominantly to acute reperfusion stage. Concurrently, captopril significantly decreased NO availability, exacerbated intrarenal hypoxia and augmented oxidative stress. CONCLUSIONS At the acute stage of renal ischemia/reperfusion-induced AKI, ACE inhibition substantially contributed to the amelioration of acute injury by improving renal function, inhibiting systemic and intrarenal angiotensin-II, attenuating intrarenal inflammation and preserving renal tissue structure. Later on, at the post-reperfusion stage, most of the beneficial effects of captopril administration on the recuperating post-ischemic kidney were no longer evident. Concurrently, ACE inhibition exacerbated intrarenal hypoxia and accelerated oxidative stress, indicating that renal adaptation to some consequences of ischemia does require bioavailability of RAS components.


Anesthesia & Analgesia | 2005

Optimization of endotracheal tube cuff filling by continuous upper airway carbon dioxide monitoring.

Shai Efrati; Yuval Leonov; Amir Oron; Yariv Siman-Tov; Michael Averbukh; Alex Lavrushevich; Ahuva Golik

Inappropriate cuff filling is responsible for various complications related to the use of an endotracheal tube (ETT). In this study, we evaluated an objective, noninvasive method for continuous assessment of leak around the ETT cuff by monitoring carbon dioxide pressure (Pco2) in the upper airway. Pco2 levels were measured by capnography simultaneously between the ETT cuff and the vocal cords, at the oropharynx, and in the nares of the nose. Cuff filling was regulated by an electronic controller to achieve the minimal pressure needed to prevent CO2 leak. Feasibility of the method was assessed in a human simulator and in a porcine model. Clinical function was evaluated in 60 patients undergoing surgery, comparing the method to the standard anesthesiologist evaluation. Linear correlations were observed between the ETT cuff pressure and Pco2 level in the human simulator (R2 = 0.954, P < 0.0001) and in the porcine model (R2 > 0.98, P < 0.0001). Iodine leak around the ETT cuff, in the porcine model, occurred only when Pco2 levels were >2 mm Hg. In the surgery patients, the mean ETT cuff pressure determined clinically by the anesthesiologist was significantly higher than the optimal cuff pressure assessed by Pco2 (25.2 ± 3.6 versus 18.2 ± 7.8 mm Hg, respectively; P < 0.001). According to these findings, optimal ETT cuff filling pressure can be identified by monitoring Pco2 at the nares or the oropharynx.


Expert Review of Neurotherapeutics | 2014

Reflections on the neurotherapeutic effects of hyperbaric oxygen

Shai Efrati

Traumatic brain injury (TBI) and stroke are the major causes of brain damage and chronic neurological impairments. There is no agreed-upon effective metabolic intervention for TBI and stroke patients with chronic neurological dysfunction. Clinical studies published this year present convincing evidence that hyperbaric oxygen therapy (HBOT) might be the coveted neurotherapeutic method for brain repair. Here we discuss the multi-faceted role of HBOT in neurotherapeutics, in light of recent persuasive evidence for HBOT efficacy in brain repair and the new understanding of brain energy management and response to damage. We discuss optimal timing of treatment, dosage, suitable candidates and promising future directions.


Nephron Experimental Nephrology | 2007

PPAR-γ Activation Inhibits Angiotensin II Synthesis, Apoptosis, and Proliferation of Mesangial Cells from Spontaneously Hypertensive Rats

Shai Efrati; Sylvia Berman; Eduard Ilgiyeav; Zhan Averbukh; Joshua Weissgarten

Background/Aim: The angiotensin II level is elevated in subjects genetically prone to develop hypertension, triggering renal hypercellularity, cytokine production, and matrix deposition. Angiotensin-converting enzyme inhibition and/or angiotensin II type 1 receptor blockade attenuate renal damage. Rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist possessing antihypertensive and anti-inflammatory properties, was demonstrated to provide better renal protection than angiotensin-converting enzyme inhibitors. We studied the effects of in vivo peroxisome proliferator-activated receptor gamma activation by rosiglitazone on angiotensin II synthesis, proliferation, and apoptosis of mesangial cells of spontaneously hypertensive rats versus normotensive Sprague-Dawley rats. Methods: The animals consumed either a high-sodium diet (8% Na) or a normal-sodium diet (0.5% Na). Half of each group received rosiglitazone at 5 mg/kg/day. After 3 weeks, all rats were sacrificed and the mesangial cells isolated and cultured. Angiotensin II was assessed by radioimmunoassay, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and cell proliferation by [3H]thymidine incorporation. Results: Only the spontaneously hypertensive rats which consumed the high-sodium diet developed hypertension (185 ± 6 mm Hg vs. basal 128 ± 5 mm Hg; p = 0.0007) which was attenuated by rosiglitazone (to 126 ± 4 mm Hg; p = 0.34). Angiotensin II synthesis, proliferation, and apoptosis were exaggerated in mesangial cell cultures from Sprague-Dawley rats and, more so, spontaneously hypertensive rats fed the high-sodium diet, but were inhibited in cultures from rosiglitazone-treated animals. Conclusions: Peroxisome proliferator-activated receptor gamma activation, in addition to lowering blood pressure, suppresses angiotensin II synthesis and downregulates angiotensin-II-mediated proliferation and apoptosis of mesangial cells. In the context of hypertension-induced renal damage, this would mean that the renoprotective role of rosiglitazone extends beyond glycemic and lipidemic control.


Nephrology Dialysis Transplantation | 2008

Application of normobaric hyperoxia therapy for amelioration of haemorrhagic shock-induced acute renal failure*

Shai Efrati; Sylvia Berman; Gadi Ben Aharon; Yariv Siman-Tov; Zhan Averbukh; Joshua Weissgarten

BACKGROUND Hypoxia resultant from haemorrhagic shock is the primary cause of kidney damage. Application of normobaric hyperoxia therapy (NHT) is an acceptable treatment for acute haemorrhagic shock. We investigated the effect of NHT on amelioration of haemorrhagic shock-induced rat renal failure. METHODS Twenty-four Sprague-Dawley rats were subjected to gradual blood withdrawal/reperfusion, followed by 12-h, 24-h or 48-h NHT. Verification/monitoring of intrarenal hypoxia was performed using Hypoxyprobe-TM-1. Subsequently, cystatin C, urea and creatinine were assessed in serum by a Hitachi autoanalyser, and NO, 3-nitro-tyrosine, STAT-8-isoprostane and NF-kB in renal medullae and cortices by specific ELISAs. RESULTS In rats subjected to haemorrhagic shock, 12- to 48-h NHT significantly reduced intrarenal Hypoxyprobe-TM-1 stained areas and attenuated augmentation of urea, creatinine and cystatin C. Haemorrhagic shock resulted in a 10-fold drop of intrarenal NO availability. 12-h and 24-h, but not 48-h, NHT significantly increased cortical/medullar NO synthesis, the latter, however, not approaching the pre-shock values. Significant shock-induced accumulation of STAT-8-isoprostane and 3-nitro-tyrosine was further exacerbated by NHT. Haemorrhagic shock activated NF-kB in ischaemic tissues, which was not attenuated by NHT. CONCLUSIONS (1) 12- to 48-h NHT decreased intrarenal hypoxia signs and ameliorated deterioration of renal functions in a rat model of haemorrhagic shock-induced renal failure. (2) 12- to 24 h NHT improved bioavailability of NO in cortices/medullae of kidneys recuperating from haemorrhagic shock. (3) If any anti-inflammatory activities were stimulated by NHT, they would not be mediated via the NF-kB pathway. (4) Despite NHT-associated elevation of reactive oxygen species (ROS), early oxygen supply proved mandatory for effective recuperation of ischaemic kidney from detrimental consequences of haemorrhagic shock.


American Journal of Nephrology | 2009

Differential Effects of N-Acetylcysteine, Theophylline or Bicarbonate on Contrast-Induced Rat Renal Vasoconstriction

Shai Efrati; Sylvia Berman; Ilia Ilgiyeav; Yariv Siman-Tov; Zhan Averbukh; Joshua Weissgarten

Background: Vasoconstriction and reactive oxygen species (ROS) accumulation following contrast media (CM) injection are the key factors triggering CM-induced nephropathy. We compared the effects of N-acetylcysteine (NAC), theophylline or sodium bicarbonate on intrarenal vasoconstriction and ROS generation in a rat model of CM-induced nephropathy. Methods: Following a 3-day dehydration, Sprague-Dawley rats received CM (Telebrix) or sham ‘CM’ injection of 0.9% saline. Part of them received NAC, theophylline or bicarbonate prior to CM. Medullar renal blood flow was estimated by laser Doppler. The animals were sacrificed 1, 15 or 30 min after the respective treatments, their kidneys allocated and intrarenal STAT-8 isoprostane, PGE2 and NO assessed. Results: Vasoconstriction was significantly attenuated by NAC. Theophylline only mildly attenuated the perfusion drop at 15 min, and was ineffective following 30 min. Unlike theophylline or bicarbonate, NAC significantly augmented intrarenal PGE2. NAC, theophylline but not bicarbonate, gradually increased intrarenal NO. In all experimental variables, CM-induced ROS accumulation, represented by STAT-8 isoprostane estimation, progressed undisturbed. Conclusions: (1) CM-induced intrarenal vasoconstriction was efficiently prohibited by NAC but not bicarbonate or theophylline; (2) the vasodilatory effect of NAC was mediated via increased PGE2 synthesis, and (3) ROS accumulation was a primary renal response to CM-induced injury, not affected by any pharmacologic manipulations.


Neuropsychology (journal) | 2015

Improvement of memory impairments in poststroke patients by hyperbaric oxygen therapy.

Rahav Boussi-Gross; Haim Golan; Olga Volkov; Yair Bechor; Dan Hoofien; Michal Schnaider Beeri; Eshel Ben-Jacob; Shai Efrati

OBJECTIVE Several recent studies have shown that hyperbaric oxygen (HBO₂) therapy carry cognitive and motor therapeutic effects for patients with acquired brain injuries. The goal of this study was to address the specific effects of HBO₂ on memory impairments after stroke at late chronic stages. METHOD A retrospective analysis was conducted on data of 91 stroke patients 18 years or older (mean age ∼60 years) who had either ischemic or hemorrhagic stroke 3-180 months before HBO₂ therapy (M = 30-35 months). The HBO₂ protocol included 40 to 60 daily sessions, 5 days per week, 90 min each, 100% oxygen at 2ATA, and memory tests were administered before and after HBO₂ therapy using NeuroTraxs computerized testing battery. Assessments were based on verbal or nonverbal, immediate or delayed memory measures. The cognitive tests were compared with changes in the brain metabolic state measured by single-photon emission computed tomography. RESULTS Results revealed statistically significant improvements (p < .0005, effect sizes medium to large) in all memory measures after HBO₂ treatments. The clinical improvements were well correlated with improvement in brain metabolism, mainly in temporal areas. CONCLUSIONS Although further research is needed, the results illustrate the potential of HBO₂ for improving memory impairments in poststroke patients, even years after the acute event.


Journal of Hypertension | 2007

Enhanced angiotensin II production by renal mesangium is responsible for apoptosis/proliferation of endothelial and epithelial cells in a model of malignant hypertension.

Shai Efrati; Sylvia Berman; Naomi Goldfinger; Neta Erez; Zhan Averbukh; Ahuva Golik; Varda Rotter; Joshua Weissgarten

Objective The systemic renin–angiotensin system (RAS) plays a crucial role in the pathogenesis of malignant hypertension. However, the intrarenal RAS might be at least equally important. We investigated the relationship between intrarenal RAS and mesangial, epithelial and endothelial cell proliferation/apoptosis in a model of malignant hypertension. Methods Cultured murine mesangial cells were subjected to 160 mmHg hydrostatic pressure for 1 h. Angiotensin II was assessed by radio-immunoassay (RIA); pro-metalloproteinase-1 (pro-MMP-1) by enzyme-linked immunosorbent assay (ELISA); hydrogen peroxide (H2O2) by photocolorimetric assay, apoptosis by terminal dUTP (2-deoxyuridine 5′-triphosphate) nick-end labelling (TUNEL), p53 by western blot and proliferation by [3H]thymidine incorporation, with or without angiotensin II and/or angiotensin II type 1/angiotensin II type 2 (AT-1/AT-2) receptor blockers. Endothelial and epithelial cells were similarly treated, and the same parameters evaluated. Further, untreated cells of both lines were cultured in conditioned medium of mesangial cells exposed to pressure. Their proliferation, apoptosis and angiotensin II production were also assessed. Results High hydrostatic pressure increased angiotensin II production by mesangial cells, coinciding with augmented apoptosis and proliferation. Co-stimulation with exogenous angiotensin II amplified both effects. Pressure per se evoked no response in endothelial/epithelial cells, while exogenous angiotensin II stimulated proliferation and apoptosis. No augmentation of p53 expression was evident. These effects were abolished by anti-angiotensin-II peptide, saralasine and losartan, but not by PD123319. Incubation of untreated cells in medium of mesangium subjected to pressure, augmented proliferation and apoptosis. No significant changes were noticed in pro-MMP or H2O2. Conclusions Mesangium plays a deleterious role in the pathogenesis of malignant hypertension. High hydrostatic pressure stimulates angiotensin II synthesis by mesangial cells. The latter is responsible for hypercellularity and apoptotic death of mesangial, endothelial and epithelial cells. In this model, exaggerated apoptosis and proliferation are mediated via the angiotensin II pathway independently of p53 gene activation.

Collaboration


Dive into the Shai Efrati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge