Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shai Morin is active.

Publication


Featured researches published by Shai Morin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm

Shai Morin; Robert W. Biggs; Mark S. Sisterson; Laura Shriver; Christa Ellers-Kirk; Dawn M. Higginson; Daniel Holley; Linda J. Gahan; David G. Heckel; Yves Carrière; Timothy J. Dennehy; Judith K. Brown; Bruce E. Tabashnik

Evolution of resistance by pests is the main threat to long-term insect control by transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Because inheritance of resistance to the Bt toxins in transgenic crops is typically recessive, DNA-based screening for resistance alleles in heterozygotes is potentially much more efficient than detection of resistant homozygotes with bioassays. Such screening, however, requires knowledge of the resistance alleles in field populations of pests that are associated with survival on Bt crops. Here we report that field populations of pink bollworm (Pectinophora gossypiella), a major cotton pest, harbored three mutant alleles of a cadherin-encoding gene linked with resistance to Bt toxin Cry1Ac and survival on transgenic Bt cotton. Each of the three resistance alleles has a deletion expected to eliminate at least eight amino acids upstream of the putative toxin-binding region of the cadherin protein. Larvae with two resistance alleles in any combination were resistant, whereas those with one or none were susceptible to Cry1Ac. Together with previous evidence, the results reported here identify the cadherin gene as a leading target for DNA-based screening of resistance to Bt crops in lepidopteran pests.


Insect Biochemistry and Molecular Biology | 2008

Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae).

Iris Karunker; Juergen Benting; Bettina Lueke; Tanja Ponge; Ralf Nauen; Emmanouil Roditakis; John Vontas; Kevin Gorman; Ian Denholm; Shai Morin

The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.


Plant Physiology | 2008

The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators

Sergey Malitsky; Eyal Blum; Hadar Less; Ilya Venger; Moshe Elbaz; Shai Morin; Yuval Eshed; Asaph Aharoni

In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the “distal” network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene activities of the two clades. While it is very similar to the ATR1-like clade members in terms of downstream gene targets, its expression is highly correlated with that of the MYB28-like clade members. Finally, we used the unique transgenic plants obtained here to show that AGs are likely more potent deterrents of the whitefly Bemisia tabaci compared with IGs. The influence on insect behavior raises an important question for future investigation of the functional aspect of our initial finding, which pointed to enriched expression of the MYB28-like clade genes in the abaxial domain of the Arabidopsis leaf.


Insect Biochemistry and Molecular Biology | 2009

Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance

Iris Karunker; Evangelia Morou; Dimitra Nikou; Ralf Nauen; Rotem Sertchook; Bradley J. Stevenson; Mark J. I. Paine; Shai Morin; John Vontas

The neonicotinoid imidacloprid is one of the most important insecticides worldwide. It is used extensively against the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), an insect pest of eminent importance globally, which was also the first pest to develop high levels of resistance against imidacloprid and other neonicotinoids in the field. Recent reports indicated that in both the B and Q biotypes of B. tabaci, the resistant phenotype is associated with over-expression of the cytochrome P450 gene CYP6CM1. In this study, molecular docking and dynamic simulations were used to analyze interactions of imidacloprid with the biotype Q variant of the CYP6CM1 enzyme (CYP6CM1vQ). The binding mode with the lowest energy in the enzyme active site, the key amino acids involved (i.e. Phe-130 and Phe-226), and the putative hydroxylation site (lowest distance to carbon 5 of the imidazolidine ring system of imidacloprid) were predicted. Heterologous expression of the CYP6CM1vQ confirmed the accuracy of our predictions and demonstrated that the enzyme catalyses the hydroxylation of imidacloprid to its less toxic 5-hydroxy form (K(cat) = 3.2 pmol/min/pmol P450, K(m) = 36 microM). The data identify CYP6CM1vQ as a principle target for inhibitor design, aimed at inactivating insecticide-metabolizing P450s in natural insect pest populations.


Bulletin of Entomological Research | 2005

DNA markers for identifying biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) and studying population dynamics

V. Khasdan; I. Levin; A. Rosner; Shai Morin; S. Kontsedalov; L. Maslenin; A.R. Horowitz

The two most widespread biotypes of Bemisia tabaci (Gennadius) in southern Europe and the Middle East are referred to as the B and Q-type, which are morphologically indistinguishable. In this study various DNA markers have been developed, applied and compared for studying genetic diversity and distribution of the two biotypes. For developing sequence characterized amplified regions (SCAR) and cleaved amplified polymorphic sequences (CAPS) techniques, single random amplified polymorphic DNA (RAPD) fragments of B and Q biotypes, respectively, were used. The CAPS were investigated on the basis of nuclear sodium channel and the mitochondrial cytochrome oxidase I genes (mtCOI) sequences. In general, complete agreement was found between the different markers used. Analysis of field samples collected in Israel for several years, using these markers, indicated that the percentage of the Q biotype tends to increase in field populations as time progresses. This may be attributed to the resistance of the Q biotype to neonicotinoids and pyriproxyfen and the susceptibility of the B biotype to these insecticides.


Phytopathology | 2001

Rate of Tomato yellow leaf curl virus Translocation in the Circulative Transmission Pathway of its Vector, the Whitefly Bemisia tabaci

Murad Ghanim; Shai Morin; Henryk Czosnek

ABSTRACT Whiteflies (Bemisia tabaci, biotype B) were able to transmit Tomato yellow leaf curl virus (TYLCV) 8 h after they were caged with infected tomato plants. The spread of TYLCV during this latent period was followed in organs thought to be involved in the translocation of the virus in B. tabaci. After increasing acquisition access periods (AAPs) on infected tomato plants, the stylets, the head, the midgut, a hemolymph sample, and the salivary glands dissected from individual insects were subjected to polymerase chain reaction (PCR) without any treatment; the presence of TYLCV was assessed with virus-specific primers. TYLCV DNA was first detected in the head of B. tabaci after a 10-min AAP. The virus was present in the midgut after 40 min and was first detected in the hemolymph after 90 min. TYLCV was found in the salivary glands 5.5 h after it was first detected in the hemolymph. Subjecting the insect organs to immunocapture-PCR showed that the virus capsid protein was in the insect organs at the same time as the virus genome, suggesting that at least some TYLCV translocates as virions. Although females are more efficient as vectors than males, TYLCV was detected in the salivary glands of males and of females after approximately the same AAP.


Insect Biochemistry and Molecular Biology | 2002

Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture.

Shai Morin; M.S Williamson; S.J Goodson; Judith K. Brown; Bruce E. Tabashnik; Timothy J. Dennehy

The voltage-gated sodium channel is the primary target site of pyrethroid insecticides. In some insects, super knockdown resistance (super-kdr) to pyrethroids is caused by point mutations in the linker fragment between transmembrane segments 4 and 5 of the para-type sodium channel protein domain II (IIS4-5). Here, we identify two mutations in the IIS4-5 linker of the para-type sodium channel of the whitefly, BEMISIA TABACI: methionine to valine at position 918 (M918V) and leucine to isoleucine at position 925 (L925I). Although each mutation was isolated independently from strains >100-fold resistant to a pyrethroid (fenpropathrin) plus organophosphate (acephate) mixture, only L925I was associated with resistance in strains derived from the field in 2000 and 2001. The L925I mutation occurred in all individuals from nine different field collections that survived exposure to a discriminating concentration of fenpropathrin plus acephate. Linkage analysis of hemizygous male progeny of unmated heterozygous F1 females (L925Ixwild-type) shows that the observed resistance is tightly linked to the voltage-gated sodium channel locus. The results provide a molecular tool for better understanding, monitoring and managing pyrethroid resistance in B. tabaci.


Journal of Economic Entomology | 2005

Association Between Resistance to Bt Cotton and Cadherin Genotype in Pink Bollworm

Bruce E. Tabashnik; Robert W. Biggs; Dawn M. Higginson; Scottie Henderson; Devika C. Unnithan; Gopalan C. Unnithan; Christa Ellers-Kirk; Mark S. Sisterson; Timothy J. Dennehy; Yves Carrière; Shai Morin

Abstract Two strains of pink bollworm, Pectinophora gossypiella (Saunders), each derived in 1997 from a different field population, were selected for resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac in the laboratory. One strain (MOV97-R) originated from Mohave Valley in western Arizona; the other strain (SAF97-R) was from Safford in eastern Arizona. Relative to a susceptible laboratory strain, Cry1Ac resistance ratios were 1700 for MOV97-R and 520 for SAF97-R. For the two resistant strains, larval survival did not differ between non-Bt cotton and transgenic cotton producing Cry1Ac. In contrast, larval survival on Bt cotton was 0% for the two unselected parent strains from which the resistant strains were derived. Previously identified resistance (r) alleles of a cadherin gene (BtR) occurred in both resistant strains: r1 and r3 in MOV97-R, and r1 and r2 in SAF97-R. The frequency of individuals carrying two r alleles (rr) was 1.0 in the two resistant strains and 0.02 in each of the two unselected parent strains. Furthermore, in two hybrid strains with a mixture of susceptible (s) and r alleles at the BtR locus, all survivors on Bt cotton had two r alleles. The results show that resistance to Cry1Ac-producing Bt cotton is associated with recessive r alleles at the BtR locus in the strains of pink bollworm tested here. In conjunction with previous results from two other Bt-resistant strains of pink bollworm (APHIS-98R and AZP-R), results reported here identify the cadherin locus as the leading candidate for molecular monitoring of pink bollworm resistance to Bt cotton.


Advances in Virus Research | 2001

Whiteflies: Vectors, and victims (?), of geminiviruses

Henryk Czosnek; Murad Ghanim; Shai Morin; Galina Rubinstein; Vivian Fridman; Muhamad Zeidan

Publisher Summary This chapter focuses on geminivirus insect–pathogen hypothesis. Most of viruses infecting plants rely on insects to move from one host to another. Some remain associated with the mouth parts and can be inoculated within seconds or minutes. Others are transmitted only several hours after acquisition. During this latent period, virions translocate into the insect alimentary tract, cross the gut into the primitive bloodstream, and reach the salivary glands. Recombination between a virus infecting plants and other infecting animals may be the driving force enabling plant viruses to extend their host range to insects. Indeed, evidence has been recently presented suggesting that a plant virus has acquired a vertebrate host by recombining with a vertebrate-infecting virus. Plant viruses, such as luteoviruses and geminiviruses seem to use recombination as a way for broadening their host range and possibly for diversifying their functions. In particular, geminiviruses may constitute a family of plant viruses that are in the process of acquiring, or losing, abilities to interact actively with their insect vector, the whitefly Bemisia tabaci , to a point reminiscent of a host–pathogen relationship.


Experimental and Applied Acarology | 2007

ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae)

Tselila Ben-David; Sarah Melamed; Uri Gerson; Shai Morin

The use of DNA barcodes, short DNA sequences from a standardized region of the genome, has recently been proposed as a tool to facilitate species identification and discovery. Here we show that second internal transcribed spacer of nuclear ribosomal DNA (rDNA-ITS2) barcodes effectively discriminate among 16 species of spider mites (Acari: Tetranychidae) from Israel. The barcode sequences of each species were unambiguously distinguishable from all other species and formed distinct, nonoverlapping monophyletic groups in the maximum-parsimony tree. Sequence divergences were generally much greater between species than within them. Using a 0.02 (2%) threshold for species diagnosis in our data set, 14 out of 16 species recognized by morphological criteria would be accurately identified. The only exceptions involved the low divergence, 0.011–0.015 (1.1–1.5%), between Tetranychus urticae and Tetranychus turkestani, where speciation may have occurred only recently. Still, these species had fixed alternative rDNA-ITS2 variants, with five diagnostic nucleotide substitutions. As a result, we tentatively conclude that rDNA-ITS2 sequence barcodes may serve as an effective tool for the identification of spider mite species and can be applicable as a diagnostic tool for quarantine and other pest management activities and decision-making. We predict that our work, together with similar efforts, will provide in the future the platform for a uniform, accurate, practical and easy-to-use method of spider mite species identification.

Collaboration


Dive into the Shai Morin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moshe Elbaz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michal Alon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Henryk Czosnek

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Osnat Malka

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Asaph Aharoni

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

John Vontas

Agricultural University of Athens

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Fabrick

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge