Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaija Samuel is active.

Publication


Featured researches published by Shaija Samuel.


Cancer Research | 2009

Chemoresistant Colorectal Cancer Cells, the Cancer Stem Cell Phenotype, and Increased Sensitivity to Insulin-like Growth Factor-I Receptor Inhibition

Nikolaos A. Dallas; Ling Xia; Fan Fan; Michael J. Gray; Puja Gaur; George Van Buren; Shaija Samuel; Michael P. Kim; Sherry J. Lim; Lee M. Ellis

5-Fluorouracil (5FU) and oxaliplatin are standard therapy for metastatic colorectal cancer (CRC), but the development of chemoresistance is inevitable. Because cancer stem cells (CSC) are hypothesized to be chemoresistant, we investigated CSC properties in newly developed chemoresistant CRC cell lines and sought to identify targets for therapy. The human CRC cell line HT29 was exposed to increasing doses of 5FU (HT29/5FU-R) or oxaliplatin (HT29/OxR) to achieve resistance at clinically relevant doses. Western blotting and flow cytometry were done to determine molecular alterations. The insulin-like growth factor-I receptor (IGF-IR) monoclonal antibody (mAb) AVE-1642 was used to inhibit signaling in vitro and in vivo using murine xenograft models. HT29/5FU-R and HT29/OxR showed 16- to 30-fold enrichment of CD133(+) cells and 2-fold enrichment of CD44(+) cells (putative CRC CSC markers). Resistant cells were enriched 5- to 22-fold for double-positive (CD133(+)/CD44(+)) cells. Consistent with the CSC phenotype, resistant cells exhibited a decrease in cellular proliferation in vitro (47-59%; P < 0.05). Phosphorylated and total IGF-IR levels were increased in resistant cell lines. HT29/5FU-R and HT29/OxR cells were approximately 5-fold more responsive to IGF-IR inhibition relative to parental cells (P < 0.01) in vitro. Tumors derived from HT29/OxR cells showed significantly greater growth inhibition in response to an IGF-IR mAb than did parental cells (P < 0.05). Chemoresistant CRC cells are enriched for CSC markers and the CSC phenotype. Chemotherapy-induced IGF-IR activation provided for enhanced sensitivity to IGF-IR-targeted therapy. Identification of CSC targets presents a novel therapeutic approach in this disease.


Clinical Cancer Research | 2008

Endoglin (CD105): A Marker of Tumor Vasculature and Potential Target for Therapy

Nikolaos A. Dallas; Shaija Samuel; Ling Xia; Fan Fan; Michael J. Gray; Sherry J. Lim; Lee M. Ellis

Endoglin (CD105) is an accessory protein of the transforming growth factor-β receptor system expressed on vascular endothelial cells. Mutation of the endoglin gene is associated with hereditary hemorrhagic telangiectasias, or Osler-Weber-Rendu syndrome, and has been studied extensively in the context of this disease. The expression of endoglin is elevated on the endothelial cells of healing wounds, developing embryos, inflammatory tissues, and solid tumors. Endoglin is a marker of activated endothelium, and its vascular expression is limited to proliferating cells. Recent studies identified endoglin expression in several solid tumor types, with the level of expression correlating with various clinicopathologic factors including decreased survival and presence of metastases. Attempts to target endoglin and the cells that express this protein in tumor-bearing mice have yielded promising results.


Cancer Medicine | 2012

Overexpression of Snail induces epithelial- mesenchymal transition and a cancer stem cell- like phenotype in human colorectal cancer cells

Fan Fan; Shaija Samuel; Kurt W. Evans; Jia Lu; Ling-Hao Xia; Yunfei Zhou; Eric Sceusi; Federico Tozzi; Xiangcang Ye; Sendurai A. Mani; Lee M. Ellis

Epithelial–mesenchymal transition (EMT) is a critical process providing tumor cells with the ability to migrate and escape from the primary tumor and metastasize to distant sites. Recently, EMT was shown to be associated with the cancer stem cell (CSC) phenotype in breast cancer. Snail is a transcription factor that mediates EMT in a number of tumor types, including colorectal cancer (CRC). Our study was done to determine the role of Snail in mediating EMT and CSC function in CRC. Human CRC specimens were stained for Snail expression, and human CRC cell lines were transduced with a retroviral Snail construct or vector control. Cell proliferation and chemosensitivity to oxaliplatin of the infected cells were determined by the MTT (colorimetric 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay. Migration and invasion were determined in vitro using modified Boyden chamber assays. EMT and putative CSC markers were analyzed using Western blotting. Intravenous injection of tumor cells was done to evaluate their metastatic potential in mice. Snail was overexpressed in human CRC surgical specimens. This overexpression induced EMT and a CSC‐like phenotype in human CRC cells and enhanced cell migration and invasion (P < 0.002 vs. control). Snail overexpression also led to an increase in metastasis formation in vivo (P < 0.002 vs. control). Furthermore, the Snail‐overexpressing CRC cells were more chemoresistant to oxaliplatin than control cells. Increased Snail expression induces EMT and the CSC‐like phenotype in CRC cells, which enhance cancer cell invasion and chemoresistance. Thus, Snail is a potential therapeutic target in metastatic CRC.


Clinical Cancer Research | 2009

Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis.

Puja Gaur; Diane R. Bielenberg; Shaija Samuel; Debashish Bose; Yunfei Zhou; Michael J. Gray; Nikolaos A. Dallas; Fan Fan; Ling Xia; Jia Lu; Lee M. Ellis

Class 3 semaphorins (SEMA3) were first identified as glycoproteins that negatively mediate neuronal guidance by binding to neuropilin and repelling neurons away from the source of SEMA3. However, studies have shown that SEMA3s are also secreted by other cell types, including tumor cells, where they play an inhibitory role in tumor growth and angiogenesis (specifically SEMA3B and SEMA3F). SEMA3s primarily inhibit the cell motility and migration of tumor and endothelial cells by inducing collapse of the actin cytoskeleton via neuropilins and plexins. Besides binding to SEMA3s, neuropilin also binds the protumorigenic and proangiogenic ligand vascular endothelial growth factor (VEGF). Although some studies attribute the antitumorigenic and antiangiogenic properties of SEMA3s to competition between SEMA3s and VEGF for binding to neuropilin receptors, several others have shown that SEMA3s display growth-inhibitory activity independent of competition with VEGF. A better understanding of these molecular interactions and the role and signaling of SEMA3s in tumor biology will help determine whether SEMA3s represent potential therapeutic agents. Herein, we briefly review (a) the role of SEMA3s in mediating tumor growth, (b) the SEMA3 receptors neuropilins and plexins, and (c) the potential competition between SEMA3s and VEGF family members for neuropilin binding. (Clin Cancer Res 2009;15(22):676370)


British Journal of Cancer | 2011

Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration.

Fan Fan; Shaija Samuel; Puja Gaur; Jia Lu; Nikolaos A. Dallas; Ling Xia; Debashish Bose; Lee M. Ellis

Background:Bevacizumab (Bev), a monoclonal antibody to vascular endothelial growth factor (VEGF), is used in combination with chemotherapy for the treatment of metastatic colorectal cancer (CRC). The effects of Bev on angiogenesis have been well described, but the direct effect of Bev on tumour cells is unknown. This study was carried out to determine the molecular and phenotypic changes in CRC cells after chronic Bev exposure in vitro.Methods:Human CRC cell lines were chronically exposed (3 months) to Bev in vitro to develop Bev-adapted (Bev-A) cell lines. Vascular endothelial growth factor family members were determined by reverse transcription–polymerase chain reaction and western blotting. Migration and invasion was determined using standard in vitro assays. Intravenous injection of tumour cells was carried out to evaluate metastatic potential in mice.Results:Bevacizumab-adapted cells were found to be more migratory and invasive than control cells (P<0.001). Bevacizumab-adapted cells showed higher levels of VEGF-A, -B, -C, placental growth factor (PlGF), VEGF receptor-1 (VEGFR-1) and phosphorylation of VEGFR-1. Furthermore, treatment with SU5416, a VEGFR protein tyrosine kinase inhibitor, led to significantly decreased cell migration in vitro (P<0.001). Bevacizumab-adapted cells were more metastatic in vivo (P<0.05).Conclusion:Chronic exposure of CRC cells to Bev (1) increased expression of VEGF-A, -B, -C, PlGF, VEGFR-1 and VEGFR-1 phosphorylation, (2) increased tumour cell migration and invasion, and (3) metastatic potential in vivo. Our study shows the functional significance of autocrine VEGF signalling in CRC cells.


Clinical Cancer Research | 2008

Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma.

Nikolaos A. Dallas; Michael J. Gray; Ling Xia; Fan Fan; George Van Buren; Puja Gaur; Shaija Samuel; Sherry J. Lim; Thiruvengadam Arumugam; Huamin Wang; Lee M. Ellis

Purpose. Neuropilin-2 (NRP-2) is a coreceptor for vascular endothelial growth factor (VEGF) on endothelial cells. NRP-2 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) cells relative to nonmalignant ductal epithelium. This study determined the role of NRP-2 in PDAC cells. Experimental Design. NRP-2 expression was reduced in PDAC cells with stable short-hairpin RNA (shRNA) transfection. Western blotting was done to evaluate signaling intermediates. Migration and invasion studies were carried out in Boyden chambers. Anchorage-independent growth was assessed by soft-agar colony formation. In vivo growth was evaluated using murine subcutaneous and orthotopic xenograft models. Immunohistochemical analysis evaluated in vivo proliferation and angiogenesis. Results. shRNA-NRP-2 decreased NRP-2 levels without affecting neuropilin-1 levels. Akt activation was decreased in clones with reduced NRP-2 (shRNA-NRP-2). shRNA-NRP-2 cells showed decreased migration, invasion, and anchorage-independent growth compared with control cells. In vitro proliferation rates were similar in control- and shRNA-transfected cells. Subcutaneous and orthotopic xenografts from shRNA-transfected cells were significantly smaller than those resulting from control-transfected cells (P < 0.05). Furthermore, shRNA-NRP-2 tumors exhibited less cellular proliferation and decreased microvascular area relative to control tumors (P < 0.05). Constitutive expression of the angiogenic mediator Jagged-1 was reduced in shRNA-NRP-2 cells, whereas vascular endothelial growth factor levels were unchanged. Conclusion. Reduction of NRP-2 expression in PDAC cells decreased survival signaling, migration, invasion, and ability to grow under anchorage-independent conditions. In vivo, reduction of NRP-2 led to decreased growth of xenograft tumors and decreased vascular area, which was associated with decreased Jagged-1 levels. NRP-2 is a potential therapeutic target on PDAC cells.


Gastroenterology | 2011

Identification of cancer stem cells in human gastrointestinal carcinoid and neuroendocrine tumors

Puja Gaur; Eric Sceusi; Shaija Samuel; Ling Xia; Fan Fan; Yunfei Zhou; Jia Lu; Federico Tozzi; Gabriel Lopez-Berestein; Pablo Vivas-Mejia; Asif Rashid; Jason B. Fleming; Eddie K. Abdalla; Steven A. Curley; Jean Nicolas Vauthey; Anil K. Sood; James C. Yao; Lee M. Ellis

BACKGROUND & AIMS Metastatic gastrointestinal neuroendocrine tumors (NETs) frequently are refractory to chemotherapy. Chemoresistance in various malignancies has been attributed to cancer stem cells (CSCs). We sought to identify gastrointestinal neuroendocrine CSCs (N-CSCs) in surgical specimens and a NET cell line and to characterize novel N-CSC therapeutic targets. METHODS Human gastrointestinal NETs were evaluated for CSCs using the Aldefluor (Stemcell Technologies, Vancouver, Canada) assay. An in vitro, sphere-forming assay was performed on primary NET cells. CNDT2.5, a human midgut carcinoid cell line, was used for in vitro (sphere-formation) and in vivo (tumorigenicity assays) CSC studies. N-CSC protein expression was characterized using Western blotting. In vivo, systemic short interfering RNA administration targeted Src. RESULTS By using the Aldefluor assay, aldehyde dehydrogenase-positive (ALDH+) cells comprised 5.8% ± 1.4% (mean ± standard error of the mean) of cells from 19 patient samples. Although many primary cell lines failed to grow, CNDT96 ALDH+ cells formed spheres in anchorage-independent conditions, whereas ALDH- cells did not. CNDT2.5 ALDH+ cells formed spheres, whereas ALDH- cells did not. In vivo, ALDH+ CNDT2.5 cells generated more tumors, with shorter latency than ALDH- or sham-sorted cells. Compared with non-CSCs, ALDH+ cells demonstrated increased expression of activated Src, Erk, Akt, and mammalian target of rapamycin (mTOR). In vivo, anti-Src short interfering RNA treatment of ALDH+ tumors reduced tumor mass by 91%. CONCLUSIONS CSCs are present in NETs, as shown by in vitro sphere formation and in vivo tumorigenicity assays. Src was activated in N-CSCs and represents a potential therapeutic target in gastrointestinal NETs.


Oncogene | 2011

Intracrine vascular endothelial growth factor signaling in survival and chemoresistance of human colorectal cancer cells

Shaija Samuel; Fan Fan; Long H. Dang; Ling Xia; Puja Gaur; Lee M. Ellis

Although the effects of vascular endothelial growth factor (VEGF) on angiogenesis and vascular function are well known, the effects of VEGF on tumor cell function remain to be elucidated. We studied phenotypic changes in human colorectal cancer (CRC) cells with homozygous deletion of VEGF alleles to determine the potential direct role of VEGF on tumor cell function. Loss of VEGF expression led to significantly decreased cell growth and increased spontaneous apoptosis in CRC cells (P<0.01). Loss of VEGF also increased the in vitro sensitivity of cells to the cytotoxic effects of the chemotherapeutic drug 5-fluorouracil, as shown by increased apoptosis (P<0.05). These effects were mediated via upregulation of the proapoptotic mediators caspase-3, cleaved PARP and Bax and downregulation of the pro-survival mediator survivin. Our findings suggest a novel and distinct function of VEGF in mediating autocrine/intracrine CRC cell survival.


British Journal of Cancer | 2011

Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells

Debashish Bose; L. J. Zimmerman; Mariaelena Pierobon; Emmanuel Petricoin; Federico Tozzi; Alexander A. Parikh; Fan Fan; Nikolaos A. Dallas; Ling Xia; Puja Gaur; Shaija Samuel; Daniel C. Liebler; Lee M. Ellis

Background:Recent studies suggest that cancer stem cells (CSCs) mediate chemoresistance, but interestingly, only a small percentage of cells in a resistant tumour are CSCs; this suggests that non-CSCs survive by other means. We hypothesised that chemoresistant colorectal cancer (CRC) cells generate soluble factors that enhance survival of chemonaive tumour cells.Methods:Chemoresistant CRC cells were generated by serial passage in oxaliplatin (Ox cells). Conditioned media (CM) was collected from parental and oxaliplatin-resistant (OxR) cells. CRC cells were treated with CM and growth and survival were assessed. Tumour growth rates were determined in nude mice after cells were treated with CM. Mass spectrometry (MS) identified proteins in CM. Reverse phase protein microarray assays determined signalling effects of CM in parental cells.Results:Oxaliplatin-resistant CM increased survival of chemo-naive cells. CSC CM also increased growth of parental cells. Parental and OxR mixed tumours grew larger than tumours composed of parental or OxR cells alone. Mass spectrometry detected unique survival-promoting factors in OxR CM compared with parental CM. Cells treated with OxR CM demonstrated early phosphorylation of EGFR and MEK1, with later upregulation of total Akt .We identified progranulin as a potential mediator of chemoresistance.Conclusion:Chemoresistant tumour cells and CSCs may promote resistance through soluble factors that mediate survival in otherwise chemosensitive tumour cells.


Molecular and Cellular Endocrinology | 2005

Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells.

Hiroyuki Yoshida; Jinsong Liu; Shaija Samuel; Wenjun Cheng; Daniel G. Rosen; Honami Naora

Border cell migration is a process that occurs during Drosophila ovarian development in which cells derived from a simple epithelium migrate and invade neighboring tissue. This process resembles the behavior of cancerous cells that derive from the simple epithelium of the human ovary. One important regulator of border cell migration is Taiman, a homolog of steroid receptor coactivator-3 (SRC-3). Because increasing evidence indicates that similarities exist between the molecular control of migration of border cells and of cancer cells, we investigated whether SRC-3 controls ovarian cancer cell migration. Little or no SRC-3 expression was detected in normal ovarian surface epithelium, ovarian cysts and borderline ovarian tumors that lack stromal invasion. In contrast, SRC-3 was abundantly expressed in high-grade ovarian carcinomas. Inhibiting SRC-3 expression in ovarian cancer cells markedly reduced cell spreading and migration, and altered intracellular localization of focal adhesion kinase. This inhibitory effect on cell migration was independent of the estrogen receptor (ER) status of the cells. These studies reveal a novel role for SRC-3 in ovarian cancer progression by promoting cell migration, independently of its role in estrogen receptor signaling.

Collaboration


Dive into the Shaija Samuel's collaboration.

Top Co-Authors

Avatar

Lee M. Ellis

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Fan Fan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ling Xia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Puja Gaur

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Federico Tozzi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yunfei Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jia Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nikolaos A. Dallas

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Debashish Bose

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric Sceusi

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge