Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaila Bhat is active.

Publication


Featured researches published by Shaila Bhat.


Journal of Biological Chemistry | 2005

Intermolecular Contact between Globular N-terminal Fold and C-terminal Domain of ApoA-I Stabilizes Its Lipid-bound Conformation STUDIES EMPLOYING CHEMICAL CROSS-LINKING AND MASS SPECTROMETRY

Shaila Bhat; Mary G. Sorci-Thomas; Eric T. Alexander; Michael P. Samuel; Michael J. Thomas

The structure of apoA-I on discoidal high density lipoprotein (HDL) was studied using a combination of chemical cross-linking and mass spectrometry. Recombinant HDL particles containing 145 molecules of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and two molecules of apoA-I with a 96-Å diameter were treated with the lysine-specific cross-linker, dithiobis(succinimidylpropionate) at varying molar ratios from 2:1 to 200:1. At low molar ratios of dithiobis(succinimidylpropionate) to apoA-I, two products were obtained corresponding to ∼53 and ∼80 kDa. At high molar ratios, these two products merged, yielding a product of ∼59 kDa, close to the theoretical molecular mass of dimeric apoA-I. To identify the intermolecular cross-links giving rise to the two different sized products, bands were excised from the gel, digested with trypsin, and then analyzed by liquid chromatography-electrospray-tandem mass spectrometry. In addition, tandem mass spectrometry of unique cross-links found in the 53- and 80-kDa products suggested that a distinct conformation exists for lipid-bound apoA-I on 96-Å recombinant HDL, emphasizing the inherent flexibility and malleability of the N termini and its interaction with its C-terminal domain.


Journal of Biological Chemistry | 2010

Apolipoprotein A-I Modulates Regulatory T Cells in Autoimmune LDLr−/−, ApoA-I−/− Mice

Ashley J. Wilhelm; Manal Zabalawi; John Owen; Dharika Shah; Jason M. Grayson; Amy S. Major; Shaila Bhat; Dwayne P. Gibbs; Michael J. Thomas; Mary G. Sorci-Thomas

The immune system is complex, with multiple layers of regulation that serve to prevent the production of self-antigens. One layer of regulation involves regulatory T cells (Tregs) that play an essential role in maintaining peripheral self-tolerance. Patients with autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis have decreased levels of HDL, suggesting that apoA-I concentrations may be important in preventing autoimmunity and the loss of self-tolerance. In published studies, hypercholesterolemic mice lacking HDL apoA-I or LDLr−/−, apoA-I−/− (DKO), exhibit characteristics of autoimmunity in response to an atherogenic diet. This phenotype is characterized by enlarged cholesterol-enriched lymph nodes (LNs), as well as increased T cell activation, proliferation, and the production of autoantibodies in plasma. In this study, we investigated whether treatment of mice with lipid-free apoA-I could attenuate the autoimmune phenotype. To do this, DKO mice were first fed an atherogenic diet containing 0.1% cholesterol, 10% fat for 6 weeks, after which treatment with apoA-I was begun. Subcutaneous injections of 500 μg of lipid-free apoA-I was administered every 48 h during the treatment phase. These and control mice were maintained for an additional 6 weeks on the diet. At the end of the 12-week study, DKO mice showed decreased numbers of LN immune cells, whereas Tregs were proportionately increased. Accompanying this increase in Tregs was a decrease in the percentage of effector/effector memory T cells. Furthermore, lipid accumulation in LN and skin was reduced. These results suggest that treatment with apoA-I reduces inflammation in DKO mice by augmenting the effectiveness of the LN Treg response.


Journal of Lipid Research | 2012

Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers

Mary G. Sorci-Thomas; John Owen; Brian Fulp; Shaila Bhat; Xuewei Zhu; John S. Parks; Dharika Shah; W. Gray Jerome; Mark Gerelus; Manal Zabalawi; Michael J. Thomas

This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ∼12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ∼12 nm and 10 nm diameter, contained ∼43% free cholesterol, 2–3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ∼9–14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1.


American Journal of Pathology | 2003

Induction of Fatal Inflammation in LDL Receptor and ApoA-I Double-Knockout Mice Fed Dietary Fat and Cholesterol

Manal Zabalawi; Shaila Bhat; Tara Loughlin; Michael J. Thomas; Eric T. Alexander; Mark Cline; Bill C. Bullock; Mark C. Willingham; Mary G. Sorci-Thomas

Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr(-/-)) and apoA-I (apoA-I(-/-)) gene, LDLr(-/-)/apoA-I(-/-) or double-knockout mice. Gender- and age-matched LDLr(-/-)/apoA-I(-/-) mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr(-/-) mice or single-knockout mice. The LDLr(-/-) mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr(-/-)/apoA-I(-/-) mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr(-/-) mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr(-/-) mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr(-/-)/apoA-I(-/-) mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr(-/-) mice showed similar aortic cholesterol levels to male LDLr(-/-)/apoA-I(-/-) mice despite a 4-fold higher VLDL/LDL concentration in the LDLr(-/-) mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice was compromised due to the loss of female LDLr(-/-)/apoA-I(-/-) mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr(-/-)/apoA-I(-/-) mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice showed dramatic TPC differences in response to dietary fat and cholesterol challenge, while despite these differences both genotypes accumulated similar levels of aortic cholesterol.


Clinical Lipidology | 2009

Activation of lecithin:cholesterol acyltransferase by HDL ApoA-I central helices

Mary G. Sorci-Thomas; Shaila Bhat; Michael J. Thomas

Abstract Lecithin:cholesterol acyltransferase (LCAT) is an enzyme that first hydrolyzes the sn-2 position of phospholipids, preferentially a diacylphosphocholine, and then transfers the fatty acid to cholesterol to yield a cholesteryl ester. HDL ApoA-I is the principal catalytic activator for LCAT. Activity of LCAT on nascent or lipid-poor HDL particles composed of phospholipid, cholesterol and ApoA-I allows the maturation of HDL particles into lipid-rich spherical particles that contain a core of cholesteryl ester surrounded by phospholipid and ApoA-I on the surface. This article reviews the recent progress in elucidating structural aspects of the interaction between LCAT and ApoA-I. In the last decade, there has been considerable progress in understanding the structure of ApoA-I and the central helices 5, 6, and 7 that are known to activate LCAT. However, much less information has been forthcoming describing the 3D structure and conformation of LCAT required to catalyze two separate reactions within a single monomeric peptide.


Current Opinion in Lipidology | 2006

The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-i

Michael J. Thomas; Shaila Bhat; Mary G. Sorci-Thomas

Purpose of review The purpose of this review is to highlight recent advances in mass spectrometry and its use for identifying the lipid-bound conformation of apolipoprotein A-I. Given the current interest in understanding the structure of HDL apolipoprotein A-I, this approach seems ideal in assessing its dual role as mediator of lipid efflux and modulator of cellular inflammation. Recent findings A large number of different technical approaches have been employed over the past 25 years in attempts to solve the lipid-bound conformation of apolipoprotein A-I. Since the X-ray crystal structure of lipid-free Δ43 apolipoprotein A-I was reported in 1997, a ‘double belt’ model describing lipid-bound apolipoprotein A-I conformation for recombinant HDL has prevailed. Recent studies have focused on determining the exact helix–helix registry and salt-bridging partners found on a two apolipoprotein A-I molecule disc as well as on spherical HDL particles. Investigations are all aimed at defining the conformation of lipid-bound apolipoprotein A-I which may provide an explanation for how specific domains of apolipoprotein A-I interact with important HDL-modifying proteins that ultimately determine the apolipoproteins fate in circulation. Summary Recent advances in mass spectrometric sequencing of cross-linked peptides provide an excellent tool to help define protein tertiary structure. This approach has provided refined structural information on apolipoprotein A-I folding which had eluded all previous approaches.


Biochimica et Biophysica Acta | 2012

Dysfunctional HDL containing L159R ApoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice.

Mary G. Sorci-Thomas; Manal Zabalawi; Manish S. Bharadwaj; Ashley J. Wilhelm; John Owen; Bela F. Asztalos; Shaila Bhat; Michael J. Thomas

The mutation L159R apoA-I or apoA-I(L159R) (FIN) is a single amino acid substitution within the sixth helical repeat of apoA-I. It is associated with a dominant negative phenotype, displaying hypoalphaproteinemia and an increased risk for atherosclerosis in humans. Mice lacking both mouse apoA-I and LDL receptor (LDL(-/-), apoA-I(-/-)) (double knockout or DKO) were crossed>9 generations with mice transgenic for human FIN to obtain L159R apoA-I, LDLr(-/-), ApoA-I(-/-) (FIN-DKO) mice. A similar cross was also performed with human wild-type (WT) apoA-I (WT-DKO). In addition, FIN-DKO and WT-DKO were crossed to obtain WT/FIN-DKO mice. To determine the effects of the apoA-I mutations on atherosclerosis, groups of each genotype were fed either chow or an atherogenic diet for 12weeks. Interestingly, the production of dysfunctional HDL-like particles occurred in DKO and FIN-DKO mice. These particles were distinct with respect to size, and their enrichment in apoE and cholesterol esters. Two-dimensional gel electrophoresis indicated that particles found in the plasma of FIN-DKO mice migrated as large α(3)-HDL. Atherosclerosis analysis showed that FIN-DKO mice developed the greatest extent of aortic cholesterol accumulation compared to all other genotypes, including DKO mice which lack any apoA-I. Taken together these data suggest that the presence of large apoE enriched HDL particles containing apoA-I L159R lack the normal cholesterol efflux promoting properties of HDL, rendering them dysfunctional and pro-atherogenic. In conclusion, large HDL-like particles containing apoE and apoA-I(L159R) contribute rather than protect against atherosclerosis, possibly through defective efflux properties and their potential for aggregation at their site of interaction in the aorta. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Journal of Lipid Research | 2004

Quality control in the apoA-I secretory pathway: Deletion of apoA-I helix 6 leads to the formation of cytosolic phospholipid inclusions

Shaila Bhat; Manal Zabalawi; Mark C. Willingham; Gregory S. Shelness; Michael J. Thomas; Mary G. Sorci-Thomas

From a total of 47 known apolipoprotein A-I (apoA-I) mutations, only 18 are linked to low plasma HDL apoA-I concentrations, and 78% of these map to apoA-I helices 6 and 7 (residues 143–186). Gene transfer and transgenic mouse studies have shown that several helix 6 apoA-I mutations have reduced hepatic HDL production. Our objective was to examine the impact of helix 6 modifications on intracellular biosynthetic processing and secretion of apoA-I. Cells were transfected with wild-type or mutant apoA-I, radiolabeled with [35S]Met/Cys, and then placed in unlabeled medium for up to 4 h. Results show that >90% of newly synthesized wild-type apoA-I was secreted by 60 min. Over the same length of time, only 20% of helix 6 deletion mutant (Δ6 apoA-I) was secreted, whereas 80% remained cell associated. Microscopic and biochemical studies revealed that cell-associated Δ6 apoA-I was located predominantly within the cytoplasm as lipid-protein inclusions, whereas wild-type apoA-I was localized in the endoplasmic reticulum/Golgi. Results using other helix deletions or helix 6 substitution mutations indicated that only complete removal of helix 6 resulted in massive cytoplasmic accumulation. These data suggest that alterations in native apoA-I conformation can lead to aberrant trafficking and accumulation of apolipoprotein-phospholipid structures. Thus, conformation-dependent alterations in intracellular trafficking and turnover may underlie the reduced plasma HDL concentrations observed in individuals harboring deletion mutations within helix 6.


Journal of Lipid Research | 2007

Ratio determination of plasma wild-type and L159R apoA-I using mass spectrometry: tools for studying apoA-IFin

John Owen; Manish S. Bharadwaj; Michael J. Thomas; Shaila Bhat; Michael P. Samuel; Mary G. Sorci-Thomas

In this report, methods are described to isolate milligram quantities of a mutant apolipoprotein A-I (apoA-I) protein for use in structure-function studies. Expression of the L159R apoA-I mutation in humans reduces the concentration of plasma wild-type apoA-I, thus displaying a dominant negative phenotype in vivo. Earlier attempts to express and isolate this mutant protein resulted in extensive degradation and protein misfolding. Using an Escherichia coli expression system used predominantly for the isolation of soluble apoA-I mutant proteins, we describe the expression and purification of L159R apoA-I (apoA-IFin) from inclusion bodies. In addition, we describe a mass spectrometric method for measuring the L159R-to-wild-type apoA-I ratio in a 1 μl plasma sample. These new methods will facilitate further studies into the mechanism behind the dominant negative phenotype associated with the expression of the L159R apoA-I protein in humans.


Journal of Lipid Research | 2008

Three-dimensional models of HDL apoA-I: implications for its assembly and function

Michael J. Thomas; Shaila Bhat; Mary G. Sorci-Thomas

Collaboration


Dive into the Shaila Bhat's collaboration.

Top Co-Authors

Avatar

Mary G. Sorci-Thomas

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Michael J. Thomas

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Owen

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric T. Alexander

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley J. Wilhelm

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Willingham

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge