Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shailendra K. Gupta is active.

Publication


Featured researches published by Shailendra K. Gupta.


ACS Nano | 2014

Curcumin-Loaded Nanoparticles Potently Induce Adult Neurogenesis and Reverse Cognitive Deficits in Alzheimer’s Disease Model via Canonical Wnt/β-Catenin Pathway

Shashi Kant Tiwari; Swati Agarwal; Brashket Seth; Anuradha Yadav; Saumya Nair; Priyanka Bhatnagar; Madhumita Karmakar; Manisha Kumari; L.K.S. Chauhan; Devendra Kumar Patel; Vikas Srivastava; Dhirendra Singh; Shailendra K. Gupta; Anurag Tripathi; Rajnish Kumar Chaturvedi; Kailash C. Gupta

Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimers disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.


Environmental Health | 2012

Nanoparticles in the environment: assessment using the causal diagram approach

Suchi Smita; Shailendra K. Gupta; Alena Bartonova; Maria Dusinska; Arno C. Gutleb; Qamar Rahman

Nanoparticles (NPs) cause concern for health and safety as their impact on the environment and humans is not known. Relatively few studies have investigated the toxicological and environmental effects of exposure to naturally occurring NPs (NNPs) and man-made or engineered NPs (ENPs) that are known to have a wide variety of effects once taken up into an organism.A review of recent knowledge (between 2000-2010) on NP sources, and their behaviour, exposure and effects on the environment and humans was performed. An integrated approach was used to comprise available scientific information within an interdisciplinary logical framework, to identify knowledge gaps and to describe environment and health linkages for NNPs and ENPs.The causal diagram has been developed as a method to handle the complexity of issues on NP safety, from their exposure to the effects on the environment and health. It gives an overview of available scientific information starting with common sources of NPs and their interactions with various environmental processes that may pose threats to both human health and the environment. Effects of NNPs on dust cloud formation and decrease in sunlight intensity were found to be important environmental changes with direct and indirect implication in various human health problems. NNPs and ENPs exposure and their accumulation in biological matrices such as microbiota, plants and humans may result in various adverse effects. The impact of some NPs on human health by ROS generation was found to be one of the major causes to develop various diseases.A proposed cause-effects diagram for NPs is designed considering both NNPs and ENPs. It represents a valuable information package and user-friendly tool for various stakeholders including students, researchers and policy makers, to better understand and communicate on issues related to NPs.


BMC Research Notes | 2009

TLR2 polymorphisms, Arg753Gln and Arg677Trp, are not associated with increased burden of tuberculosis in Indian patients

Debasis Biswas; Shailendra K. Gupta; Girish Sindhwani; Abhishek Patras

BackgroundIn view of the role of TLR2 activation in host defense against mycobacteria, the present study was conducted to examine whether TLR2 polymorphisms could account for the increased prevalence of tuberculosis in Indian patients. Detection of such polymorphisms would help in assessing the risk of developing active tuberculosis among contacts or HIV positive patients and in identifying candidates for chemoprophylaxis.FindingsOne hundred patients with tuberculosis and 100 controls were investigated for the presence of two TLR2 polymorphisms, viz. Arg753Gln and Arg677Trp, using PCR-RFLP of a 340 bp region of the TLR2 gene, followed by DNA sequencing of a randomly selected group of 35 patients. While these polymorphisms were found to be non-existent in our study groups, we observed a novel polymorphism Phe749Tyr in 2 patients. However, this polymorphism was associated with negligible deviation in Delphi electrostatic potential and structural alignment from the wild-type TLR2 protein, making it an unlikely candidate for any significant structural or functional alteration at the protein level.ConclusionHence we conclude that, contrary to reported associations in other populations, TLR2 polymorphisms are not responsible for the increased prevalence of TB in the Indian population.


Journal of Biological Chemistry | 2015

Activation of Autophagic Flux against Xenoestrogen Bisphenol-A-induced Hippocampal Neurodegeneration via AMP kinase (AMPK)/Mammalian Target of Rapamycin (mTOR) Pathways

Swati Agarwal; Shashi Kant Tiwari; Brashket Seth; Anuradha Yadav; Anshuman Singh; Anubha Mudawal; L.K.S. Chauhan; Shailendra K. Gupta; Vinay Choubey; Anurag Tripathi; Amit Kumar; Ratan Singh Ray; Shubha Shukla; Devendra Parmar; Rajnish Kumar Chaturvedi

Background: The effects of xenoestrogen bisphenol-A on autophagy, and association with oxidative stress and apoptosis are still elusive. Results: Transient activation of autophagy protects against bisphenol-A-induced neurodegeneration via AMPK activation and mTOR down-regulation. Conclusion: Autophagy induction against bisphenol-A is an early cells tolerance response. Significance: Autophagy provides an imperative biological marker for evaluation of neurotoxicity by xenoestrogen. The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cells compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.


Journal of Biological Chemistry | 2015

Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway

Shashi Kant Tiwari; Brashket Seth; Swati Agarwal; Anuradha Yadav; Madhumita Karmakar; Shailendra K. Gupta; Vinay Choubey; Abhay Sharma; Rajnish Kumar Chaturvedi

Background: Neurogenesis, the process of generation of new neurons, is reduced in Alzheimer disease (AD). Results: Ethosuximide (ETH), an anticonvulsant drug, increased neurogenesis, reduced neurodegeneration, and reversed cognitive impairments in a rat model of AD-like phenotypes. Conclusion: ETH induces neurogenesis, thus reversing AD-like phenotypes. Significance: ETH could be used as a therapeutic molecule to enhance neurogenesis. Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling.


Nucleic Acids Research | 2014

Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

Ulf Schmitz; Xin Lai; Felix Winter; Olaf Wolkenhauer; Julio Vera; Shailendra K. Gupta

MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/.


Vaccine | 2010

In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B--a clue for vaccine development.

Shishir K. Gupta; Suchi Smita; Aditya Narayan Sarangi; Mugdha Srivastava; Bashir A. Akhoon; Qamar Rahman; Shailendra K. Gupta

Neisseria meningitidis, an exclusive human pathogen, is a major cause of mortality due to meningococcal meningitis and sepsis in many developing countries. Three meningococcal serogroup B proteins, i.e. T-cell stimulating protein A (TspA), autotransporter A (AutA), and IgA-specific serine endopeptidase (IGA1) elicits CD4+ T-cell response and may enhance the effectiveness of meningococcal vaccines by acting as protective immunogens. A very limited data on T-helper cell epitopes in MenB proteins is available. Hence, in silico prediction of peptide sequences which may act as helper T lymphocyte epitopes in MenB proteins was carried out by NetMHCIIpan web server. HLA distribution analysis was done by using the population coverage tool of Immune Epitope Database to determine the fraction of individuals in various populations expected to respond to a given set of predicted T-cell epitopes based on HLA genotype frequencies. Six epitopic core sequences, two from each MenB proteins, i.e. AutA, TspA and IgA1 protease were predicted to associate with a large number of HLA-DR alleles. These six peptides may act as T-cell epitope in more than 95% of populations in 8 out of 12 populations considered. The T-cell stimulation potential of these predicted peptides containing the core epitopic sequences is to be validated by using laboratory experiments for their efficient use as peptide vaccine candidates against N. meningitidis serogroup B.


Infection, Genetics and Evolution | 2011

Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase

Shishir K. Gupta; Mugdha Srivastava; Bashir A. Akhoon; Suchi Smita; Ulf Schmitz; Olaf Wolkenhauer; Julio Vera; Shailendra K. Gupta

Antigenic drift is the ability of the swine influenza virus to undergo continuous and progressive changes in response to the host immune system. These changes dictate influenza vaccine updates annually to ensure inclusion of antigens of the most current strains. The identification of those peptides that stimulate T-cell responses, termed T-cell epitopes, is essential for the development of successful vaccines. In this study, the highly conserved and specific epitopes from neuraminidase of globally distributed H1N1 strains were predicted so that these potential vaccine candidates may escape with antigenic drift. A total of nine novel CD8(+) T-cell epitopes for MHC class-I and eight novel CD4(+) T-cell epitopes for MHC class-II alleles were proposed as novel epitope based vaccine candidates. Additionally, the epitope FSYKYGNGV was identified as a highly conserved, immunogenic and potential vaccine candidate, capable for generating both CD8(+) and CD4(+) responses.


Vaccine | 2009

In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer.

Shishir K. Gupta; Archana Singh; Mugdha Srivastava; Shailendra K. Gupta; Bashir Akhlaq Akhoon

HPV vaccines available in the market are not effective against different strains of papillomavirus, therefore, there is a need to develop a new prophylactic DNA vaccine which can work against different strains of HPVs and may lead to protection of cervical cancer against new pandemic viruses. We designed a potential prophylactic DNA vaccine by using all the consensus epitopic sequences of HPVs L2 capsid protein and performed in silico cloning of multiepitopic antigenic DNA sequence in pVAX-1 vector. Immunogenicity of vaccine has been enhanced by techniques like codon optimization, engineering CpG motifs, introducing promoters and co-injection with plasmids expressing immune-stimulatory molecules.


Journal of Molecular Graphics & Modelling | 2010

In silico designing and optimization of anti-breast cancer antibody mimetic oligopeptide targeting HER-2 in women.

Bashir A. Akhoon; Shishir K. Gupta; Vijeshwar Verma; Gagan Dhaliwal; Mugdha Srivastava; Shailendra K. Gupta; Raja Feroz Ahmad

Overexpression of HER-2 is of frequent (20-30%) occurrence in breast cancer. Therapeutic targeting of HER-2 with humanized antibody derived oligopeptide may be a promising approach to the treatment of breast cancer. HER-2 gene is part of a family of genes that play critical roles in regulating transmembrane growth of breast cancer cells. Pertuzumab, a recombinant humanized monoclonal antibody (2C4), binds to extracellular domain II of the HER-2 receptor and inhibits its ability to dimerize with other HER receptors blocking the cell growth, signaling and apoptosis induction. The unique binding pocket on HER-2 for pertuzumab provides an important target domain for creation of new anticancer drugs. In the present work an efficient oligopeptide was designed by our computational method that interacts with pertuzumab binding sites of HER-2. In silico docking study demonstrated the best specific interaction of RASPADREV oligopeptide with the dimerization domain in the HER-2 molecule among various screened oligopeptides. ADMET and SAR properties prove the drug likeness of designed oligopeptide as having value 0.98.

Collaboration


Dive into the Shailendra K. Gupta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio Vera

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bashir A. Akhoon

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Krishna P. Singh

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhumita Karmakar

Indian Institute of Toxicology Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge