Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shailendra K. Sahu is active.

Publication


Featured researches published by Shailendra K. Sahu.


Journal of Neurochemistry | 2007

A novel role of glia maturation factor : induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines

Asgar Zaheer; Smita Zaheer; Shailendra K. Sahu; Scott Knight; Houdy Khosravi; Satya N. Mathur; Ramon Lim

The glia maturation factor (GMF), which was discovered in our laboratory, is a highly conserved protein predominantly localized in astrocytes. GMF is an intracellular regulator of stress‐related signal transduction. We now report that the overexpression of GMF in astrocytes leads to the destruction of primary oligodendrocytes by interactions between highly purified cultures of astrocytes, microglia, and oligodendrocytes. We infected astrocytes with a replication‐defective adenovirus carrying the GMF cDNA. The overexpression of GMF caused the activation of p38 MAP kinase and transcription factor NF‐κB, as well as the induction of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) mRNA and protein in astrocytes. Small interfering RNA‐mediated GMF knockdown completely blocked the GMF‐dependent activation of p38 mitogen‐activated protein kinase (MAPK), NF‐κB, and enhanced expression of GM‐CSF by astrocytes. Inhibition of p38 MAPK or NF‐κB by specific inhibitors prevented GM‐CSF production. The cell‐free conditioned medium from overexpressing GMF astrocytes contained 320 ± 33 pg/mL of GM‐CSF, which was responsible for enhanced production and secretion of TNF‐α, IL‐1β, IL‐6, and IP‐10 by microglia. Presence of these inflammatory cytokines in the conditioned medium from microglia efficiently destroyed oligodendrocytes in culture. These results suggest that GMF‐induced production of GM‐CSF in astrocytes is depending on p38 MAPK and NF‐κB activation. The GM‐CSF‐dependent expression and secretion of inflammatory cytokine/chemokine, TNF‐α, IL‐1β, IL‐6, and IP‐10, is cytotoxic to oligodendrocytes, the myelin‐forming cells in the central nervous system, and as well as neurons. Our results suggest a novel pathway of GMF‐initiated cytotoxicity of brain cells, and implicate its involvement in inflammatory diseases such as multiple sclerosis.


Brain Research | 2008

Glia maturation factor modulates β-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage

Asgar Zaheer; Smita Zaheer; Ramasamy Thangavel; Yanghong Wu; Shailendra K. Sahu; Baoli Yang

Glia maturation factor (GMF), discovered and characterized in our laboratory, is a highly conserved protein primarily localized in mammalian central nervous system. Previously we demonstrated that GMF is required in the induced production of proinflammatory cytokines and chemokines in brain cells. We now report that ventricular infusion of human amyloid beta peptide1-42 (Abeta1-42) in mouse brain caused glial activation and large increases in the levels of GMF as well as induction of inflammatory cytokine/chemokine known for launching the neuro inflammatory cascade in Alzheimers disease (AD). To test the hypothesis that GMF is involved in the pathogenesis of AD, we infused Abeta1-42 in the brain of GMF-deficient (GMF-KO) mice, recently prepared in our laboratory. GMF-deficient mice showed reduced glial activation and significantly suppressed proinflammatory cytokine/chemokine production following Abeta infusion compared to wild type (Wt) mice. The decrease in glial activation in the GMF-KO mice is also associated with significant reduction in Abeta induced loss of pre-synaptic marker, synaptophysin, and post-synaptic density protein-95 (PSD 95). We also examined the potential relationship between GMF or lack of it with learning and memory using the T-maze, Y-maze, and water maze, hippocampal-dependent spatial memory tasks. Our results show that memory retention was improved in GMF-KO mice compared to Wt controls following Abeta infusion. Diminution of these Abeta1-42 effects in primary cultures of GMF-KO astrocyte and microglia were reversed by reconstituted expression of GMF. Taken together, our results indicate a novel mediatory role of GMF in the neuro-inflammatory pathway of Abeta and its pro-inflammatory functions.


Brain Research | 2007

DIMINISHED CYTOKINE AND CHEMOKINE EXPRESSION IN THE CENTRAL NERVOUS SYSTEM OF GMF-DEFICIENT MICE WITH EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

Asgar Zaheer; Shailendra K. Sahu; Yanghong Wu; Ashna Zaheer; Joel Haas; Kiwhoon Lee; Baoli Yang

Pro-inflammatory cytokines/chemokines are implemented in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model with clinical and pathological similarities to multiple sclerosis. We have previously shown that over-expression of glia maturation factor (GMF) in glial cells cause excessive production and secretion of pro-inflammatory cytokines/chemokines sufficient to destroy the myelin-forming oligodendroglial cell in vitro. In this present investigation, we evaluate the expression of pro-inflammatory mediators in the central nervous system (CNS) of GMF+/+ (wild type) mice and GMF-/- (GMF-knockout) mice at the peak of EAE induced by immunization with MOG 35-55 peptide. GMF+/+ (Wt) mice developed severe EAE with a maximal mean clinical score of 3.6+/-0.5 by day 16 post-immunization, whereas GMF-KO mice showed significantly delayed EAE with an average onset on day 26 pi with reduced mean clinical score of 1.3+/-0.3. Three of fifteen Wt mice as compared to none of GMF-KO mice died of EAE. Encephalitogenic cells from Wt mice transferred to recipient GMF-KO mice caused very mild and with low incidence of EAE. We determined the differences in the expression of cytokines, IFN-gamma, TNF-alpha, IL-1 beta, IL-6, IL-4, IL-10, and chemokines, MIP-1, MIP-2, IP-10, MCP-1, GM-CSF mRNA by quantitative real-time RT-PCR in brain and spinal cord. Our results demonstrate significantly low levels of pro-inflammatory cytokines/chemokines in the CNS of GMF-KO mice and increased expression in Wt mice with EAE. Our data suggest that GMF play a critical role in CNS inflammation.


Neuroscience | 2009

Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease

Ramasamy Thangavel; Shailendra K. Sahu; G.W. Van Hoesen; Asgar Zaheer

The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimers disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.


Neuroscience | 2011

Augmented expression of glia maturation factor in Alzheimer's disease.

Smita Zaheer; Ramasamy Thangavel; Shailendra K. Sahu; Asgar Zaheer

We have previously demonstrated that glia maturation factor (GMF), a brain-specific protein, isolated, sequenced, and cloned in our laboratory, is a prominent mediator of inflammation in the CNS leading to the death of neurons. In the present study, we demonstrate, for the first time, a significant upregulation of the GMF protein in various regions of Alzheimers disease (AD) brains compared with age-matched non-demented (ND) control brains. We analyzed AD and ND brain samples by quantitative enzyme-linked immunosorbent assay (ELISA) using a combination of highly specific monoclonal and polyclonal anti-GMF antibodies developed and characterized in our laboratory. For the comparison between ND controls and AD cases, we examined brain tissue from 12 ad cases (ages ranging from 78-92 years) and eight age-matched ND controls (ages ranging from 76-88 years). We observed a significant increase in GMF concentration in entorhinal cortex, parietal cortex, frontal cortex, occipital cortex, perirhinal cortex, and temporal cortex of AD patients. Our results clearly demonstrate that the GMF protein levels are significantly higher in all AD-affected brain regions than in ND controls. The immunohistochemistry analysis revealed co-localization of GMF with amyloid plaques (AP) and neurofibrillary tangles (NFTs) in AD brains. Our results imply that under conditions of neurodegeneration the expression of GMF is significantly upregulated.


Neurochemical Research | 2006

Reduced severity of experimental autoimmune encephalomyelitis in GMF-deficient mice

Asgar Zaheer; Smita Zaheer; Shailendra K. Sahu; Baoli Yang; Ramon Lim

Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory. Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor (GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility complex proteins, IL-1β, and MIP-1β, all associated with the development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Based on GMF’s ability to activate microglia and induce well-established proinflammatory mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease. Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and support the hypothesis that GMF plays a major role in the pathogenesis of disease.


Neuroscience | 2008

MODULAR AND LAMINAR PATHOLOGY OF BRODMANN'S AREA 37 IN ALZHEIMER'S DISEASE

Ramasamy Thangavel; Shailendra K. Sahu; G.W. Van Hoesen; Asgar Zaheer

Previous studies suggested a relationship between severity of symptoms and the degree of neurofibrillary tangles (NFTs) clustering in different areas of the cortex in Alzheimers disease (AD). The posterior inferior temporal cortex or Brodmanns area (BA 37) is involved in object naming and recognition memory. But the cellular architecture and connectivity and the NFT pathology of this cortex in AD received inadequate attention. In this report, we describe the laminar distribution and topography of NFT pathology of BA 37 in brains of AD patients by using Thionin staining for Nissl substance, Thioflavin-S staining for NFTs, and phosphorylated tau (AT8) immunohistochemistry. NFTs mostly occurred in cortical layers II, III, V and VI in the area 37 of AD brain. Moreover, NFTs appeared like a patch or in cluster pattern along the cortical layers III and V and within the columns of pyramidal cell layers. The abnormal, intensely labeled AT8 immunoreactive cells were clustered mainly in layers III and V. Based on previously published clinical correlations between cognitive abnormalities in AD and the patterns of laminar distributed NFT cluster pathology in other areas of the brain, we conclude that a similar NFT pathology that severely affected BA 37, may indicate disruption of some forms of naming and object recognition-related circuits in human AD.


Brain Research | 2008

Glia maturation factor overexpression in neuroblastoma cells activates glycogen synthase kinase-3β and caspase-3

Asgar Zaheer; Scott Knight; Ashna Zaheer; Marcus Ahrens; Shailendra K. Sahu; Baoli Yang

In the present study we report that a replication-defective adenovirus construct of GMF cDNA (GMF-V) induced overexpression of GMF protein in neuroblastoma (N18) cells caused cytotoxicity and loss of cell viability. A significant increase in activation of GSK-3beta occurred after infection with GMF-V when compared with mock and lacZ controls. Overexpression of GMF also increased caspase-3 activity, an early marker of apoptosis. Depletion of GMF gene by introducing GMF-specific siRNA (GsiRNA) completely blocked both activation of GSK-3beta and caspase-3 activation whereas a control scrambled siRNA (CsiRNA) had no effect. A cell-permeable peptide inhibitor of GSK-3beta, and lithium completely prevented GMF-dependent activation of caspase-3. These results demonstrate that GSK-3 mediates activation of the death domain caspase by GMF overexpression. We also show that the phosphorylation of GSK-3-dependent site of Tau was a consequence of GMF-overexpression in N18 cells. Taken together our results imply that GMF is involved in the signaling leading to the activation of GSK-3beta and caspase-3 in N18 cells and strongly suggest its involvement in neurodegeneration since GSK-3beta is known to hyperphosphorylate tau which is associated with the neurotoxicity of neurofibrillary tangles in Alzheimers disease.


Brain Research | 2011

Suppression of neuro inflammation in experimental autoimmune encephalomyelitis by glia maturation factor antibody

Smita Zaheer; Yanghong Wu; Shailendra K. Sahu; Asgar Zaheer

Glia maturation factor (GMF), a protein primarily localized in the central nervous system (CNS) was isolated, sequenced and cloned in our laboratory. We previously demonstrated that GMF mediates the experimental autoimmune encephalomyelitis (EAE)-induced production of pro-inflammatory cytokines and chemokines in the central nervous system of mice. In the present study we show that immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) caused an early onset (days 7-9 post immunization) and severe EAE with a mean peak score of 3.5 ± 0.5 in mice. Neutralization of GMF with four injections of anti-GMF antibody 5 to 11 days post immunization delayed the time of onset (days 12-14 post immunization) and significantly reduced the severity of EAE (mean peak score of 1.5 ± 0.4). Consistent with these clinical scores, histological examination of the CNS of these mice revealed profound differences between GMF-antibody treated mice and isotype matched control-antibody treated mice. Histological analysis of the spinal cord and brain showed severe inflammation and demyelination in the control antibody-treated mice whereas significantly reduced inflammation and demyelination was detected in GMF-antibody-treated mice at days 8, 16, and 24 post immunization. The decreased incidence and reduced severity of EAE in GMF-antibody-treated mice was consistent with the significantly reduced expressions of pro-inflammatory cytokines and chemokines. Our overall results demonstrate that neutralization of endogenous GMF with an affinity purified GMF antibody significantly decreased the inflammation, severity and progression of immunization induced active, passive and relapsing-remitting EAE. Treatment of mice with isotype-matched control antibody did not have any effect on EAE. Taken together, these results demonstrate the critical role of GMF in EAE, and GMF antibody as a potent anti-inflammatory therapeutic agent for effectively suppressing EAE in mouse models of major types of multiple sclerosis (MS).


Neurochemical Research | 2006

Cis-Parinaric Acid Effects, Cytotoxicity, c-Jun N-terminal Protein Kinase, Forkhead Transcription Factor and Mn-SOD Differentially in Malignant and Normal Astrocytes

Ayesha Zaheer; Shailendra K. Sahu; Timothy C. Ryken; Vincent C. Traynelis

Abstractcis-Parinaric acid (c-PNA), a natural four conjugated polyunsaturated fatty acid, increases free radical production and it is preferentially cytotoxic to malignant glial cells compared to normal astrocytes in-vitro. In order to explain the increased cytotoxicity of c-PNA in malignant glial cells, we compared the effects of c-PNA on the oxidative stress-dependent signal transducing events in 36B10 cells, a malignant rat astrocytoma cell line, and in fetal rat astrocytes. Our results show that c-PNA treatment in 36B10 cells caused a persistent activation of c-Jun N-terminal protein kinase (JNK) at RNA and protein levels. Specific inhibitors of the kinase significantly reversed the cytotoxicity of c-PNA. Additionally, c-PNA caused the phosphorylated inactivation of forkhead transcription factor-3a (FKHR-L1, FOXO3a) and drastically decreased the activity of mitochondrial superoxide dismutase (Mn-SOD) that protects cells from oxidative stress. On the other hand, identical c-PNA treatments in normal astrocytes increased the dephosphorylated activation of FKHR-L1, maintained activity of Mn-SOD and failed to phosphorylate JNK. Taken together, the results imply that a selective activation of JNK and the opposite regulation of FKHR-L1 and Mn-SOD contribute to the differential cytotoxicity of c-PNA in malignant and normal glial cells.

Collaboration


Dive into the Shailendra K. Sahu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent C. Traynelis

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge