Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shailendra P. Singh is active.

Publication


Featured researches published by Shailendra P. Singh.


Prostaglandins & Other Lipid Mediators | 2016

PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid.

Shailendra P. Singh; Joseph Schragenheim; Jian Cao; John R. Falck; Nader G. Abraham; Lars Bellner

BACKGROUND/OBJECTIVES Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. METHODS Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. RESULTS EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. CONCLUSION Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1 levels require PGC-1α expression.


Stem Cells and Development | 2016

Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function

Maayan Waldman; Lars Bellner; Luca Vanella; Joseph Schragenheim; Komal Sodhi; Shailendra P. Singh; Dao-Hong Lin; Anand Lakhkar; Jiangwei Li; Edith Hochhauser; Michael Arad; Zbigniew Darzynkiewicz; Attallah Kappas; Nader G. Abraham

Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation.


Journal of Nutrition and Metabolism | 2016

Downregulation of PGC-1α Prevents the Beneficial Effect of EET-Heme Oxygenase-1 on Mitochondrial Integrity and Associated Metabolic Function in Obese Mice

Shailendra P. Singh; Lars Bellner; Luca Vanella; Jian Cao; John R. Falck; Attallah Kappas; Nader G. Abraham

Background/Objectives. Obesity and metabolic syndrome and associated adiposity are a systemic condition characterized by increased mitochondrial dysfunction, inflammation, and inhibition of antioxidant genes, HO-1, and EETs levels. We postulate that EETs attenuate adiposity by stimulating mitochondrial function and induction of HO-1 via activation of PGC-1α in adipose and hepatic tissue. Methods. Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess the functional relationship among EETs, PGC-1α, HO-1, and mitochondrial signaling using an EET-agonist (EET-A) and PGC-1α-deficient cells and mice using lentiviral PGC-1α(sh). Results. EET-A is a potent inducer of PGC-1α, HO-1, mitochondrial biogenesis (cytochrome oxidase subunits 1 and 4 and SIRT3), fusion proteins (Mfn 1/2 and OPA1) and fission proteins (DRP1 and FIS1) (p < 0.05), fasting glucose, BW, and blood pressure. These beneficial effects were prevented by administration of lenti-PGC-1α(sh). EET-A administration prevented HF diet induced mitochondrial and dysfunction in adipose tissue and restored VO2 effects that were abrogated in PGC-1α-deficient mice. Conclusion. EET is identified as an upstream positive regulator of PGC-1α that leads to increased HO-1, decreased BW and fasting blood glucose and increased insulin receptor phosphorylation, that is, increased insulin sensitivity and mitochondrial integrity, and possible use of EET-agonist for treatment of obesity and metabolic syndrome.


Hormone Molecular Biology and Clinical Investigation | 2017

Ablation of adipose-HO-1 expression increases white fat over beige fat through inhibition of mitochondrial fusion and of PGC1α in female mice

Shailendra P. Singh; Ilana Grant; Aliza Meissner; Attallah Kappas; Nader G. Abraham

Abstract Background Hmox1 plays an important role in the regulation of mitochondrial bioenergetics and function by regulating cellular heme-derived CO and bilirubin. Previous studies have demonstrated that global disruption of HO-1 in humans and mice resulted in severe organ dysfunction. Methods We investigated the potential role of adipose-specific-HO-1 genetic ablation on adipose tissue function, mitochondrial quality control and energy expenditure by generating an adipo-HO-1 knockout mouse model (Adipo-HO-1−/−) and, in vitro, adipocyte cells in which HO activity was inhibited. Adiposity, signaling proteins, fasting glucose and oxygen consumption were determined and compared to adipocyte cultures with depressed levels of both HO-1/HO-2. Results Adipo-HO-1−/− female mice exhibited increased adipocyte size, and decreases in the mitochondrial fusion to fission ratio, PGC1, and SIRT3. Importantly, ablation of HO-1 in adipose tissue resulted in fat acquiring many properties of visceral fat such as decreases in thermogenic genes including pAMPK and PRDM16. Deletion of HO-1 in mouse adipose tissue led to complete metabolic dysfunction, an increase in white adipose tissue, a reduction of beige fat and associated increases in FAS, aP2 and hyperglycemia. Mechanistically, genetic deletion of HO-1 in adipose tissues decreased the mitochondrial fusion to fission ratio; disrupted the activity of the PGC1 transcriptional axis and thermogenic genes both in vitro and in vivo. Conclusion Ablation of adipose tissue-HO-1 abridged PGC1 expression promoted mitochondrial dysfunction and contributed to an increase of pro-inflammatory visceral fat and abrogated beige-cell like phenotype.


Hormone Molecular Biology and Clinical Investigation | 2017

The association of NOV/CCN3 with obstructive sleep apnea (OSA): preliminary evidence of a novel biomarker in OSA

Jeremy A. Weingarten; Lars Bellner; Stephen J. Peterson; Moe Zaw; Puja Chadha; Shailendra P. Singh; Nader G. Abraham

Abstract Obstructive sleep apnea (OSA) has a strong association with cardiovascular and metabolic abnormalities, although the mechanism driving this association is not well established. NOV/CCN3, a multifunctional extracellular matrix protein, may play a mechanistic and/or prognostic role in these associations. We hypothesized that patients with OSA, which primarily affects obese individuals, will have increased levels of NOV, and that NOV can serve as a biomarker in patients to predict OSA as well as metabolic and cardiac risk. Ten morbidly obese and 10 healthy lean subjects underwent overnight polysomnography (PSG) and clinical evaluation. Blood samples were analyzed for NOV levels, adiponectin and IL-6. OSA was found in nine obese subjects and three lean subjects. NOV levels were significantly higher in the OSA vs. no OSA group (2.1 ± 0.9 vs. 1.3 ± 0.8, p < 0.03). NOV levels were significantly higher in the obese vs. lean group (2.2 ± 0.3 vs. 1.4 ± 0.2-fold change, p < 0.03). Among lean subjects, NOV levels were significantly higher in the OSA vs. no OSA group (2.1 ± 0.9 vs. 1.0 ± 0.4, p < 0.05). NOV and AHI were positively correlated (ρ = 0.49, p = 0.033). IL-6 and adiponectin differences in obese vs. lean and OSA vs. no OSA were consistent with an inflammatory phenotype in obese subjects and OSA subjects. NOV is a novel biomarker of the presence and severity of OSA and a potential marker of future cardiovascular and metabolic disease in OSA patients.


Prostaglandins & Other Lipid Mediators | 2018

Ablation of soluble epoxide hydrolase reprogram white fat to beige-like fat through an increase in mitochondrial integrity, HO-1-adiponectin in vitro and in vivo

Lu Liu; Nitin Puri; Marco Raffaele; Joseph Schragenheim; Shailendra P. Singh; J. Alyce Bradbury; Lars Bellner; Luca Vanella; Darryl C. Zeldin; Jian Cao; Nader G. Abraham

We have shown that epoxyeicosatrienoic acids (EETs), specifically 11,12- and 14,15-EETs, reduce adipogenesis in human mesenchymal stem cells and mouse preadipocytes (3T-3L1). In this study, we explore the effects of soluble epoxide hydrolase (sEH) deletion on various aspects of adipocyte-function, including programing for white vs. beige-like fat, and mitochondrial and thermogenic gene-expressions. We further hypothesize that EETs and heme-oxygenase 1 (HO-1) form a synergistic, functional module whose effects on adipocyte and vascular function is greater than the effects of sEH deletion alone. In in vitro studies, we examined the effect of sEH inhibitors on MSC-derived adipocytes. MSC-derived adipocytes exposed to AUDA, an inhibitor of sEH, exhibit an increased number of small and healthy adipocytes, an effect reproduced by siRNA for sEH. in vivo studies indicate that sEH deletion results in a significant decrease in adipocyte size, inflammatory adipokines NOV, TNFα, while increasing adiponectin (p < 0.05). These findings are associated with a decrease in body weight (p < 0.05), and visceral fat (p < 0.05). Importantly, sEH deletion was associated with a significant increase in Mfn1, COX 1, UCP1 and adiponectin (p < 0.03). sEH deletion was manifested by a significant increase in EETs isomers 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET and an increased EETs/DHETEs ratio. Notably, activation of HO-1 gene expression further increased the levels of EETs, suggesting that the antioxidant HO-1 system protects EETs from degradation by ROS. These results are novel in that sEH deletion, while increasing EET levels, resulted in reprograming of white fat to express mitochondrial and thermogenic genes, a phenotype characteristic of beige-fat. Thus, EETs agonist(s) and sEH inhibitors may have therapeutic potential in the treatment of metabolic syndrome and obesity.


Journal of Immunology | 2018

Kavain Reduces Porphyromonas gingivalis–Induced Adipocyte Inflammation: Role of PGC-1α Signaling

Shailendra P. Singh; Olivier Huck; Nader G. Abraham; Salomon Amar

A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis–induced inflammation in adipocytes with special focus on peroxisome proliferation–activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis–induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α–deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis–induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.


International journal of hepatology | 2018

Development of NASH in Obese Mice is Confounded by Adipose Tissue Increase in Inflammatory NOV and Oxidative Stress

David Sacerdoti; Shailendra P. Singh; Joseph Schragenheim; Lars Bellner; Luca Vanella; Marco Raffaele; Aliza Meissner; Ilana Grant; Gaia Favero; Rita Rezzani; Luigi F. Rodella; David Bamshad; Edward Lebovics; Nader G. Abraham

Aim Nonalcoholic steatohepatitis (NASH) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress, and lipotoxicity. We hypothesize that an increase in the inflammatory adipokine NOV decreases antioxidant Heme Oxygenase 1 (HO-1) levels in adipose and hepatic tissue, resulting in the development of NASH in obese mice. Methods Mice were fed a high fat diet (HFD) and obese animals were administered an HO-1 inducer with or without an inhibitor of HO activity to examine levels of adipose-derived NOV and possible links between increased synthesis of inflammatory adipokines and hepatic pathology. Results NASH mice displayed decreased HO-1 levels and HO activity, increased levels of hepatic heme, NOV, MMP2, hepcidin, and increased NAS scores and hepatic fibrosis. Increased HO-1 levels are associated with a decrease in NOV, improved hepatic NAS score, ameliorated fibrosis, and increases in mitochondrial integrity and insulin receptor phosphorylation. Adipose tissue function is disrupted in obesity as evidenced by an increase in proinflammatory molecules such as NOV and a decrease in adiponectin. Importantly, increased HO-1 levels are associated with a decrease of NOV, increased adiponectin levels, and increased levels of thermogenic and mitochondrial signaling associated genes in adipose tissue. Conclusions These results suggest that the metabolic abnormalities in NASH are driven by decreased levels of hepatic HO-1 that is associated with an increase in the adipose-derived proinflammatory adipokine NOV in our obese mouse model of NASH. Concurrently, induction of HO-1 provides protection against insulin resistance as seen by increased insulin receptor phosphorylation. Pharmacological increases in HO-1 associated with decreases in NOV may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NASH.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

HIGH FAT DIET-INDUCED OBESITY AND INSULIN RESISTANCE IN CYP4A14-/- MICE IS MEDIATED BY 20-HETE

Ankit Gilani; Varunkumar Pandey; Victor Garcia; Kevin Agostinucci; Shailendra P. Singh; Joseph Schragenheim; Lars Bellner; John R. Falck; Mahesh P. Paudyal; Jorge Capdevila; Nader G. Abraham; Michal Laniado Schwartzman

20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to positively correlate with body mass index, hyperglycemia, and plasma insulin levels. This study seeks to identify a causal relationship between 20-HETE and obesity-driven insulin resistance. Cyp4a14-/- male mice, a model of 20-HETE overproduction, were fed a regular or high-fat diet (HFD) for 15 wk. 20-SOLA [2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-6( Z),15( Z)-dienoate], a 20-HETE antagonist, was administered from week 0 or week 7 of HFD. HFD-fed mice gained significant weight (16.7 ± 3.2 vs. 3.8 ± 0.35 g, P < 0.05) and developed hyperglycemia (157 ± 3 vs. 121 ± 7 mg/dl, P < 0.05) and hyperinsulinemia (2.3 ± 0.4 vs. 0.5 ± 0.1 ng/ml, P < 0.05) compared with regular diet-fed mice. 20-SOLA attenuated HFD-induced weight gain (9.4 ± 1 vs. 16.7 ± 3 g, P < 0.05) and normalized the hyperglycemia (157 ± 7 vs. 102 ± 5 mg/dl, P < 0.05) and hyperinsulinemia (1.1 ± 0.1 vs. 2.3 ± 0.4 ng/ml, P < 0.05). The impaired glucose homeostasis and insulin resistance in HFD-fed mice evidenced by reduced insulin and glucose tolerance were also ameliorated by 20-SOLA. Circulatory and adipose tissue 20-HETE levels significantly increased in HFD-fed mice correlating with impaired insulin signaling, including reduction in insulin receptor tyrosine (Y972) phosphorylation and increased serine (S307) phosphorylation of the insulin receptor substrate-1 (IRS-1). 20-SOLA treatments prevented changes in insulin signaling. These findings indicate that 20-HETE contributes to HFD-induced obesity, insulin resistance, and impaired insulin signaling.


American Journal of Physiology-heart and Circulatory Physiology | 2017

EET Intervention on Wnt1, NOV and HO-1 Signaling Prevents Obesity-Induced Cardiomyopathy in Obese Mice

Jian Cao; Shailendra P. Singh; John A. McClung; Gregory Joseph; Luca Vanella; Ignazio Barbagallo; Houli Jiang; John R. Falck; Michael Arad; Joseph I. Shapiro; Nader G. Abraham

Collaboration


Dive into the Shailendra P. Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Bellner

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Cao

University of Toledo

View shared research outputs
Top Co-Authors

Avatar

John R. Falck

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aliza Meissner

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilana Grant

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge