Shailesh N. Mistry
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shailesh N. Mistry.
Journal of Medicinal Chemistry | 2011
Jillian G. Baker; Luke A. Adams; Karolina Salchow; Shailesh N. Mistry; Richard J. Middleton; Stephen J. Hill; Barrie Kellam
The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human β-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity β-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of −9.53 and −8.46 as an antagonist of functional β2- and β1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human β2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent β2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol.1983, 5, 430–437.)
Journal of Biological Chemistry | 2014
Alaa Abdul-Ridha; Laura López; Peter Keov; David M. Thal; Shailesh N. Mistry; Patrick M. Sexton; J. Robert Lane; Meritxell Canals; Arthur Christopoulos
Background: BQCA is a selective allosteric modulator of the M1 mAChR. Results: Residues that govern BQCA activity were identified using mutagenesis and molecular modeling. Conclusion: BQCA likely occupies a pocket overlapping prototypical mAChR modulators and gains selectivity through cooperativity with orthosteric ligands. Significance: Understanding the structural basis of BQCA function can provide insight into the design of more tailored allosteric ligands. Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilized site-directed mutagenesis, analytical modeling, and molecular dynamics to delineate regions of the M1 mAChR that govern modulator binding and transmission of cooperativity. We identified Tyr-852.64 in transmembrane domain 2 (TMII), Tyr-179 and Phe-182 in the second extracellular loop (ECL2), and Glu-3977.32 and Trp-4007.35 in TMVII as residues that contribute to the BQCA binding pocket at the M1 mAChR, as well as to the transmission of cooperativity with the orthosteric agonist carbachol. As such, the BQCA binding pocket partially overlaps with the previously described “common” allosteric site in the extracellular vestibule of the M1 mAChR, suggesting that its high subtype selectivity derives from either additional contacts outside this region or through a subtype-specific cooperativity mechanism. Mutation of amino acid residues that form the orthosteric binding pocket caused a loss of carbachol response that could be rescued by BQCA. Two of these residues (Leu-1023.29 and Asp-1053.32) were also identified as indirect contributors to the binding affinity of the modulator. This new insight into the structural basis of binding and function of BQCA can guide the design of new allosteric ligands with tailored pharmacological properties.
Journal of Medicinal Chemistry | 2013
Shailesh N. Mistry; Celine Valant; Patrick M. Sexton; Benvenuto Capuano; Arthur Christopoulos; Peter J. Scammells
Established therapy in Alzheimers disease involves potentiation of the endogenous orthosteric ligand, acetylcholine, at the M1 muscarinic receptors found in higher concentrations in the cortex and hippocampus. Adverse effects, due to indiscriminate activation of other muscarinic receptor subtypes, are common. M1 muscarinic positive allosteric modulators/allosteric agonists such as BQCA offer an attractive solution, being exquisitely M1-selective over other muscarinic subtypes. A common difficulty with allosteric ligands is interpreting SAR, based on composite potency values derived in the presence of fixed concentration of agonist. In reality these values encompass multiple pharmacological parameters, each potentially and differentially sensitive to structural modification of the ligand. We report novel BQCA analogues which appear to augment ligand affinity for the receptor (pK(B)), intrinsic efficacy (τB), and both binding (α) and functional (β) cooperativity with acetylcholine. Ultimately, development of such enriched SAR surrounding allosteric modulators will provide insight into their mode of action.
British Journal of Pharmacology | 2015
Anna E. Cook; Shailesh N. Mistry; Karen J. Gregory; Sebastian G.B. Furness; Patrick M. Sexton; Peter J. Scammells; Arthur D. Conigrave; Arthur Christopoulos; Katherine Leach
Clinical use of cinacalcet in hyperparathyroidism is complicated by its tendency to induce hypocalcaemia, arising partly from activation of calcium‐sensing receptors (CaS receptors) in the thyroid and stimulation of calcitonin release. CaS receptor allosteric modulators that selectively bias signalling towards pathways that mediate desired effects [e.g. parathyroid hormone (PTH) suppression] rather than those mediating undesirable effects (e.g. elevated serum calcitonin), may offer better therapies.
Journal of Medicinal Chemistry | 2014
Shailesh N. Mistry; Nyssa Drinkwater; Chiara Ruggeri; Komagal Kannan Sivaraman; Sasdekumar Loganathan; Sabine Fletcher; Marcin Drag; Alessandro Paiardini; Vicky M. Avery; Peter J. Scammells; Sheena McGowan
Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics.
Journal of Biological Chemistry | 2014
Alaa Abdul-Ridha; J. Robert Lane; Shailesh N. Mistry; Laura López; Patrick M. Sexton; Peter J. Scammells; Arthur Christopoulos; Meritxell Canals
Background: Selective and potent positive allosteric modulators (PAMs) of the M1 mAChR have been recently described. Results: Use of structural analogues and mutagenic mapping identified the mechanistic basis for increased PAM activity. Conclusion: Combined analytical, structure-function, and modeling approaches uncover allosteric mechanisms at the M1 mAChR. Significance: New chemical space can be explored in the development of tailored M1 mAChR PAMs. Benzylquinolone carboxylic acid (BQCA) is the first highly selective positive allosteric modulator (PAM) for the M1 muscarinic acetylcholine receptor (mAChR), but it possesses low affinity for the allosteric site on the receptor. More recent drug discovery efforts identified 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one (referred to herein as benzoquinazolinone 12) as a more potent M1 mAChR PAM with a structural ancestry originating from BQCA and related compounds. In the current study, we optimized the synthesis of and fully characterized the pharmacology of benzoquinazolinone 12, finding that its improved potency derived from a 50-fold increase in allosteric site affinity as compared with BQCA, while retaining a similar level of positive cooperativity with acetylcholine. We then utilized site-directed mutagenesis and molecular modeling to validate the allosteric binding pocket we previously described for BQCA as a shared site for benzoquinazolinone 12 and provide a molecular basis for its improved activity at the M1 mAChR. This includes a key role for hydrophobic and polar interactions with residues Tyr-179, in the second extracellular loop (ECL2) and Trp-4007.35 in transmembrane domain (TM) 7. Collectively, this study highlights how the properties of affinity and cooperativity can be differentially modified on a common structural scaffold and identifies molecular features that can be exploited to tailor the development of M1 mAChR-targeting PAMs.
PLOS ONE | 2015
Alessandro Paiardini; Rebecca S. Bamert; Komagal Kannan-Sivaraman; Nyssa Drinkwater; Shailesh N. Mistry; Peter J. Scammells; Sheena McGowan
Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial activity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmodium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopeptidases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopeptidases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordination or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA-M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity reported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors utilising non-classical zinc binding groups.
Journal of Medicinal Chemistry | 2016
Shailesh N. Mistry; Manuela Jörg; Herman Lim; Natalie B. Vinh; Patrick M. Sexton; Ben Capuano; Arthur Christopoulos; J. Robert Lane; Peter J. Scammells
Positive allosteric modulators (PAMs) of the M1 muscarinic acetylcholine receptor (M1 mAChR) are a promising strategy for the treatment of the cognitive deficits associated with diseases including Alzheimers and schizophrenia. Herein, we report the design, synthesis, and characterization of a novel family of M1 mAChR PAMs. The most active compounds of the 4-phenylpyridin-2-one series exhibited comparable binding affinity to the reference compound, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (BQCA) (1), but markedly improved positive cooperativity with acetylcholine, and retained exquisite selectivity for the M1 mAChR. Furthermore, our pharmacological characterization revealed ligands with a diverse range of activities, including modulators that displayed both high intrinsic efficacy and PAM activity, those that showed no detectable agonism but robust PAM activity and ligands that displayed robust allosteric agonism but little modulatory activity. Thus, the 4-phenylpyridin-2-one scaffold offers an attractive starting point for further lead optimization.
Journal of Medicinal Chemistry | 2013
Shailesh N. Mistry; Jillian G. Baker; Peter Fischer; Stephen J. Hill; Sheila M. Gardiner; Barrie Kellam
β-Adrenoceptor antagonists boast a 50-year use for symptomatic control in numerous cardiovascular diseases. One might expect highly selective antagonists are available for the human β-adrenoceptor subtype involved in these diseases, yet few truly β1-selective molecules exist. To address this clinical need, we re-evaluated LK 204-545 (1),1 a selective β1-adrenoceptor antagonist, and discovered it possessed significant partial agonism. Removal of 1’s aromatic nitrile afforded 19, a ligand with similar β1-adrenoceptor selectivity and partial agonism (log KD of −7.75 and −5.15 as an antagonist of functional β1- and β2-mediated responses, respectively, and 34% of the maximal response of isoprenaline (β1)). In vitro β-adrenoceptor selectivity and partial agonism of 19 were mirrored in vivo. We designed analogues of 19 to improve affinity, selectivity, and partial agonism. Although partial agonism could not be fully attenuated, SAR suggests that an extended alkoxyalkoxy side chain, alongside substituents at the meta- or para-positions of the phenylurea, increases ligand affinity and β1-selectivity.
European Journal of Medicinal Chemistry | 2016
Nyssa Drinkwater; Natalie B. Vinh; Shailesh N. Mistry; Rebecca S. Bamert; Chiara Ruggeri; John P. Holleran; Sasdekumar Loganathan; Alessandro Paiardini; Susan A. Charman; Andrew K. Powell; Vicky M. Avery; Sheena McGowan; Peter J. Scammells
Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. Plasmodium falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics.