Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaima L. Nasiri is active.

Publication


Featured researches published by Shaima L. Nasiri.


Journal of Atmospheric and Oceanic Technology | 2009

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm

Yongxiang Hu; David M. Winker; Mark A. Vaughan; Bing Lin; Ali H. Omar; Charles R. Trepte; David Flittner; Ping Yang; Shaima L. Nasiri; Bryan A. Baum; Robert E. Holz; Wenbo Sun; Zhaoyan Liu; Zhien Wang; Stuart A. Young; Knut Stamnes; Jianping Huang; Ralph E. Kuehn

Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud ph...


Journal of Geophysical Research | 2002

Parameterization of shortwave ice cloud optical properties for various particle habits

Jeffrey R. Key; Ping Yang; Bryan A. Baum; Shaima L. Nasiri

[1] The relative importance of ice clouds in the climate system is highly uncertain. Measurements of their microphysical properties are sparse, especially given their complex structure and large variability in particle size, shape, and density. To better understand the role of ice clouds in the climate system, parameterizations of their radiative properties are needed. The shortwave bulk optical properties of seven ice particle shapes, or ‘‘habits,’’ are parameterized as a function of the effective ‘‘radius’’ and ice water content by integrating the scattering properties over 30 in situ size distributions. The particle habits are solid and hollow hexagonal columns, hexagonal plates, two- and three-dimensional bullet rosettes, aggregates of columns, and dendrites. Parameterizations of the volume extinction coefficient, single-scattering albedo, and the asymmetry parameter are presented for 6, 24, and 56 band shortwave schemes from 0.2 to 5.0 mm. Applications to downwelling flux and upwelling radiance calculations indicate that differences in fluxes for various habits can be more than 15%, and differences in retrievals of cloud optical depth from satellite visible reflectances can be more than 50%. INDEX TERMS: 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 3360 Meteorology and Atmospheric Dynamics: Remote sensing;


Journal of Geophysical Research | 2001

Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate‐Resolution Imaging Spectroradiometer (MODIS) bands

Ping Yang; Bo Cai Gao; Bryan A. Baum; Warren J. Wiscombe; Yong X. Hu; Shaima L. Nasiri; Peter F. Soulen; Andrew J. Heymsfield; Greg M. McFarquhar; Larry M. Miloshevich

A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.65 μm and 2.11 μm to cirrus models composed of either a single homogeneous layer or three distinct, but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distributions on the basis of in situ replicator data acquired during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light-scattering and radiative transfer theory is employed to determine the single-scattering and the bulk radiative properties of the cirrus cloud. For radiative transfer computations we present a discrete form of the adding/doubling principle that is computationally straightforward and efficient. For the 0.65 μm band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models. This result suggests that the vertical inhomogeneity effect is relatively unimportant at 0.65 μm. At 2.11 μm the bidirectional reflectances computed for both optically thin (τ = 1) and thick (τ = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Furthermore, our analysis shows that the cirrus reflectances at both the 0.65 and 2.11 μm bands are very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small “quasi-spherical” ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.


IEEE Transactions on Geoscience and Remote Sensing | 2007

Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations

Ping Yang; Lei Zhang; Gang Hong; Shaima L. Nasiri; Bryan A. Baum; Hung-Lung Huang; Michael D. King; Steven Platnick

This paper reports on the comparison of two latest versions (collections 4 and 5) of ice cloud products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The differences between the bulk optical properties of ice clouds used in collections 4 and 5 and the relevant impact on simulating the correlation of the bidirectional reflection functions at two MODIS bands centered at 0.65 (or 0.86) and 2.13 mum are investigated. The level-3 MODIS ice cloud properties (specifically, ice cloud fraction, optical thickness, and effective particle size in this paper) from the collection 4 and 5 datasets are compared for a tropical belt of 30deg S-30deg N. Furthermore, the impact of the differences between the MODIS collection 4 and 5 ice cloud products on the simulation of the radiative forcing of these clouds is investigated. Over the tropics, the averaged ice cloud fraction from collection 5 is 1.1% more than the collection 4 counterpart, the averaged optical thickness from collection 5 is 1.2 larger than the collection 4 counterpart, and the averaged effective particle radius from collection 5 is 1.8 mum smaller than the collection 4 counterpart. Moreover, the magnitude of the differences between collection 5 and 4 ice cloud properties also depends on the surface characteristics, i.e., over land or over ocean. The differences of these two datasets (collections 4 and 5) of cloud properties can have a significant impact on the simulation of the radiative forcing of ice clouds. In terms of total (longwave plus shortwave) cloud radiative forcing, the differences between the collection 5 and 4 results are distributed primarily between -60 and 20 W ldr m-2 but peak at 0 W ldr m-2.


Journal of Applied Meteorology and Climatology | 2007

Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm−1

Bryan A. Baum; Ping Yang; Shaima L. Nasiri; Andrew K. Heidinger; Andrew J. Heymsfield; Jun Li

Abstract This study reports on the development of bulk single-scattering models for ice clouds that are appropriate for use in hyperspectral radiative transfer cloud modeling over the spectral range from 100 to 3250 cm−1. The models are developed in a manner similar to that recently reported for the Moderate-Resolution Imaging Spectroradiometer (MODIS); therefore these models result in a consistent set of scattering properties from visible to far-infrared wavelengths. The models incorporate a new database of individual ice-particle scattering properties that includes droxtals, 3D bullet rosettes, hexagonal solid and hollow columns, aggregates, and plates. The database provides single-scattering properties for each habit in 45 size bins ranging from 2 to 9500 μm, and for 49 wavenumbers between 100 and 3250 cm−1, which is further interpolated to 3151 discrete wavenumbers on the basis of a third-order spline interpolation method. Bulk models are developed by integrating various properties over both particle ...


Journal of Applied Meteorology | 2002

The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data

Shaima L. Nasiri; Bryan A. Baum; Andrew J. Heymsfield; Ping Yang; Michael R. Poellot; David P. Kratz; Yongxiang Hu

Detailed in situ data from cirrus clouds have been collected during dedicated field campaigns, but the use of the size and habit distribution data has been lagging in the development of more realistic cirrus scattering models. In this study, the authors examine the use of in situ cirrus data collected during three field campaigns to develop more realistic midlatitude cirrus microphysical models. Data are used from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)-I (1986) and FIRE-II (1991) campaigns and from a recent Atmospheric Radiation Measurement (ARM) Program campaign held in March‐April of 2000. The microphysical models are based on measured vertical distributions of both particle size and particle habit and are used to develop new scattering models for a suite of moderate-resolution imaging spectoradiometer (MODIS) bands spanning visible, near-infrared, and infrared wavelengths. The sensitivity of the resulting scattering properties to the underlying assumptions of the assumed particle size and habit distributions are examined. It is found that the near-infrared bands are sensitive not only to the discretization of the size distribution but also to the assumed habit distribution. In addition, the results indicate that the effective diameter calculated from a given size distribution tends to be sensitive to the number of size bins that are used to discretize the data and also to the ice-crystal habit distribution.


Journal of Applied Meteorology and Climatology | 2008

Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement

Shaima L. Nasiri; Brian H. Kahn

Abstract Determining cloud thermodynamic phase using infrared satellite observations typically requires a priori assumptions about relationships between cloud phase and cloud temperature. In this study, limitations of an approach using two infrared channels with moderate spectral resolutions are demonstrated, as well as the potential for improvement using channels with higher spectral resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument uses a bispectral infrared cloud phase determination algorithm. MODIS observations during January 2005 show that approximately 23% of cloudy pixels are classified as mixed or unknown cloud phase; this increases to 78% when only cloud-top temperatures between 250 and 265 K are considered. Radiative transfer simulations show that the bispectral algorithm has limited ability to discriminate between water and ice clouds in this temperature range. There is also the potential for thin ice clouds at colder temperatures to be misclassified as water clou...


Journal of Applied Meteorology and Climatology | 2014

Evaluation of AIRS Cloud-Thermodynamic-Phase Determination with CALIPSO

Hongchun Jin; Shaima L. Nasiri

Atmospheric Infrared Sounder (AIRS) infrared-based cloud-thermodynamic-phase retrievals are evaluated using the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud thermodynamic phase. The AIRS cloud phase is derived from spectral information contained within the 8‐12-mm window, and CALIPSO provides coincident pixel-scale observations of cloud phase using the depolarization capabilityof the532-nmchannel.Comparisons are performed betweentheAIRS andCALIPSOcloud-phase observations for single-layer (48.5% of all clouds), heterogeneous-layer (45.9%), and multilayered (5.6%) clouds. The AIRS ice phase is in agreement with CALIPSO for more than 90% of coincident observations globally, with the largest discrepancies found in high latitudes and multilayered clouds. AIRS water phase generally follows CALIPSO spatial patterns, but the frequency is lower by about a factor of 2. The ice and waterphasesofAIRSbothshowmisclassificationsabout1%ofthetimewhencomparedwithCALIPSO.Not all clouds demonstrate strong phase signatures in the AIRS spectrum, which leads AIRS to classify unknown phase to around 10% of CALIPSO’s ice clouds and 60% of CALIPSO’s water clouds. This study shows that thealgorithmiscapableofdetectingicecloudswithintheAIRSfieldofviewandcanbeusedasthefirststepin further retrievals of ice-cloud optical thickness and effective particle size.


Journal of Atmospheric and Oceanic Technology | 2004

Daytime Multilayered Cloud Detection Using Multispectral Imager Data

Shaima L. Nasiri; Bryan A. Baum

Abstract This study reports on recent progress toward the daytime detection of multilayered clouds in satellite multispectral data, specifically for the case of optically thin cirrus overlying lower-level water clouds. The technique is applied to 200 × 200 pixel arrays of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and is primarily based on the relationship between the near-infrared reflectance (at either 1.6 or 2.1 μm) and the 11-μm brightness temperature. Additional information used by the algorithm includes the operational MODIS cloud mask and cloud thermodynamic phase as inferred from the 8.5- and 11-μm brightness temperatures. The performance of the algorithm is evaluated for two MODIS case studies, and results are compared to coincident cloud physics lidar (CPL) data obtained from an aircraft platform. In both cases, the multilayered cloud detection algorithm results appear reasonable in comparison with the CPL data. The first case study, from 11 December 2002 during the Terr...


Journal of Applied Meteorology and Climatology | 2011

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias Schreier; Richard A. Frey

AbstractComparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch AIRS calibration. One full day (1 January 2005) of global collection-5 MODIS and version-5 AIRS retrievals of cloud-top temperature Tc, effective cloud fraction f, and derived effective brightness temperature Tb,e is investigated. Comparisons of Tb,e demonstrate that MODIS and AIRS are essentially radiatively consistent and that MODIS Tb,e is 0.62 K higher than AIRS Tb,e for all scenes, increasing to 1.43 K for cloud described by AIRS as single layer and decreasing to 0.50 K for two-layer clouds. Somewhat larger differences in Tc and f are observed between the two instruments. The magnitudes of differences depend partly on whether MODIS uses a CO2-slicing or 11-μm brightness temperature window retrieval method. Some cloud- and regime-type differences and si...

Collaboration


Dive into the Shaima L. Nasiri's collaboration.

Top Co-Authors

Avatar

Brian H. Kahn

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Schreier

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric J. Fetzer

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Qing Yue

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven Platnick

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Heymsfield

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Annmarie Eldering

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Henry E. Revercomb

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge