Shaimaa Nasr Amin
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaimaa Nasr Amin.
F1000Research | 2013
Shaimaa Nasr Amin; Sandra M. Younan; Mira F Youssef; Laila A. Rashed; Ibrahim Mohamady
Background: The hippocampus is a key brain area for many forms of learning and memory and is particularly sensitive to changes in glucose homeostasis. Aim of the work: To investigate in experimentally induced type 1 and 2 diabetes mellitus in rat model the effect of diabetes mellitus on cognitive functions and related markers of hippocampal synaptic plasticity, and the possible impact of blocking N-methyl-D-aspartic acid (NMDA) receptors by memantine. Materials and methods: Seven rat groups were included: non-diabetic control and non-diabetic receiving memantine; type-1 diabetic groups - untreated, treated with insulin alone and treated with insulin and memantine; and type 2 diabetic groups - untreated and memantine treated. Cognitive functions were assessed by the Morris Water Maze and passive avoidance test. Biochemical analysis was done for serum glucose, serum insulin and insulin resistance. Routine histological examination was done, together with immunohistochemistry for detection of the hippocampal learning and memory plasticity marker, namely activity regulated cytoskeletal-associated protein (Arc), and the astrocytes reactivity marker, namely glial fibrillary acidic protein (GFAP). Results: Both type 1 and 2 untreated diabetic groups showed significantly impaired cognitive performance compared to the non-diabetic group. Treating the type 1 diabetic group with insulin alone significantly improved cognitive performance, but significantly decreased GFAP and Arc compared to the untreated type 1 group. In addition, the type 2 diabetic groups showed a significant decrease in hippocampus GFAP and Arc compared to the non-diabetic groups. Blocking NMDA receptors by memantine significantly increased cognitive performance, GFAP and Arc in the type 1 insulin-memantine group compared to the type 1-insulin group and significantly increased Arc in the type 2-memantine group compared to the untreated type 2 diabetic group. The non-diabetic group receiving memantine was, however, significantly adversely affected. Conclusion: Cognitive functions are impaired in both types of diabetes mellitus and can be improved by blockage of NMDA receptors which may spark a future therapeutic role for these receptors in diabetes-associated cognitive dysfunction.
Neuromolecular Medicine | 2015
Shaimaa Nasr Amin; Ahmed Amro El-Aidi; Mohamed Mostafa Ali; Yasser Mahmoud Attia; Laila A. Rashed
Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer’s disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.
Journal of Integrative Neuroscience | 2014
Shaimaa Nasr Amin; Sarah Mahmoud Gamal; Reham Shehab El Nemr Esmail; Tarek Mohamed Abdel Aziz; Laila A. Rashed
Stress is any condition that seriously affects the balance of the organism physiologically and psychologically. Stress activates the hypothalamic-pituitary-adrenal (HPA) releasing glucocorticoid hormones that produce generalized effects on different body systems including the nervous system. This study aimed to investigate the effect of acute restraint stress (ARS) on cognitive performance by measuring spatial working memory in Y-maze, behavior (anxiety and exploratory behavior) in open field test, expression of synaptophysin and glial fibrillary acidic protein (GFAP) in the hippocampus by immunohistochemistry, dopaminergic receptors (D2) in the basal ganglia by gene expression and comparing the effect of ghrelin and quetiapine on the previous parameters. 36 adult male albino rats constituted the animal model of this work and have been divided into six groups: control group, control group exposed to ARS, quetiapine group, quetiapine group exposed to ARS, ghrelin group and ghrelin group exposed to ARS. We demonstrated more neuroprotective effect for quetiapine compared to ghrelin on stress response, anxiety behavior and working spatial memory impairment due to ARS.
Journal of Cellular Physiology | 2018
Shaimaa Nasr Amin; Usama Khamis Hussein; Hanan Dawood Yassa; Sherif S. Hassan; Laila A. Rashed
Diabetes Mellitus is a chronic generalized disorder due to insulin insufficiency or resistance. Skeletal muscles represent one of the most important target organs that is affected by insulin signaling. The aim of the current work was to investigate the effect of metformin versus vitamin D (and also simultaneous administration) therapy in type 2 diabetic (T2D) rats on the state of the muscle and insulin sensitivity. Thirty six male rats constituted the animal model and have been divided into five groups: control, Diabetic, Diabetic + Metformin, Diabetic + Vitamin D, Diabetic + Metformin + Vitamin D. Blood samples were taken for biochemical measurements of serum calcium, interleukin‐6 (IL‐6), Triglycerides (TG), glucose, insulin, and calculation of HOMA‐IR, and then rats were sacrificed, dissected for removal of gastrocnemius muscle that is used for both biochemical, histopathological and electron microscopy examination. Oral administration of vitamin D alone or in combination with metformin improved insulin sensitivity in skeletal muscles, and sustained the metabolic complications along with muscle atrophy and inflammation in T2D rats. We demonstrated super‐beneficial action on insulin resistance of additional vitamin D therapy in T2DM rats that were insufficiently controlled by metformin alone.
Canadian Journal of Physiology and Pharmacology | 2017
Shaimaa Nasr Amin; Ahmed Amro El-Aidi; Maha Baligh Zickri; Laila A. Rashed; Sherif S. Hassan
Stress affects many organs in addition to the brain, including the liver. We assessed the effects on the liver of blocking N-methyl-d-aspartate (NMDA) glutamate receptors with memantine in acute and repeated restraint stress. Forty-two male albino rats were divided into 7 groups; control, acute restraint stress (ARS), ARS + memantine, repeated restraint stress, repeated restraint + memantine, and positive control groups. We measured serum iron, zinc, alanine transferase and aspartame transferase, hepatic malondialdehyde, tumor necrosis factor-α (TNF-α), glutathione peroxidase, superoxide dismutase, metallothionein content, zinc transporter ZRT/IRT-like protein 14 mRNA expression, and hepcidin expression. We conducted a histopathological evaluation via histological staining and immunostaining for glial fibrillary acidic protein and synaptophysin expression, both of which are markers of hepatic stellate cell (HSC) activation. Both ARS and repeated stress increased markers of hepatic cell injury, oxidative stress, and HSC activation. Blocking NMDA with memantine provided a hepatoprotective effect in acute and repeated restraint stress and decreased hepatic cell injury, oxidative stress, and HSC activation.
Journal of Cellular Physiology | 2018
Fahaid H. Al-Hashem; Suliman Al-Humayed; Shaimaa Nasr Amin; Samaa Samir Kamar; Soheir S. Mansy; Sarah Hassan; Lubna O. Abdel-Salam; Mohamed Abd Ellatif; Mohammed Alfaifi; Mohamed A. Haidara; Bahjat Al-Ani
The potential inhibitory effect of the antidiabetic and anti‐inflammatory drug, metformin on thioacetamide (TAA)‐induced hepatotoxicity associated with the inhibition of mammalian target of rapamycin (mTOR)–hypoxia‐inducible factor‐1α (HIF‐1α) axis has not been investigated before. Therefore, we tested whether metformin can protect against liver injuries including fibrosis induced by TAA possibly via the downregulation of mTOR–HIF‐1α axis and profibrogenic and inflammatory biomarkers. Rats either injected with TAA (200 mg/kg; twice a week for 8 weeks) before being killed after 10 weeks (model group) or were pretreated with metformin (200 mg/kg) daily for 2 weeks before TAA injections and continued receiving both agents until the end of the experiment, at Week 10 (protective group). Using light and electron microscopy examinations, we observed in the model group substantial damage to the hepatocytes and liver tissue such as collagen deposition, infiltration of inflammatory cells, and degenerative cellular changes with ballooned mitochondria that were substantially ameliorated by metformin. Metformin also significantly ( p < 0.05) inhibited TAA‐induced HIF‐1α, mTOR, the profibrogenic biomarker α‐smooth muscle actin, tissue inhibitor of metalloproteinases‐1, tumor necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), alanine aminotransferase (ALT) and aspartate aminotransferase in harvested liver homogenates and blood samples. In addition, a significant ( p < 0.01) positive correlation between hypoxia scoring (HIF‐1α) and the serum levels of TNF‐α ( r = 0.797), IL‐6 ( r = 0.859), and ALT ( r = 0.760) was observed. We conclude that metformin protects against TAA‐induced hepatic injuries in rats, which is associated with the inhibition of mTOR–HIF‐1α axis and profibrogenic and inflammatory biomarkers; thus, may offer therapeutic potential in humans.
International Journal of Morphology | 2018
Mohammad Dallak; Ismaeel Bin-Jaliah; Fahaid H. Al-Hashem; Samaa Samir Kamar; Dina H. Abdel Kader; Shaimaa Nasr Amin; Mohamed A. Haidara; Bahjat Al-Ani
Kidney injury secondary to diabetes is the most common cause of kidney failure. We sought to determine whether pretreatment with the insulin-sensitizing drug metformin prior to the induction of diabetes can protect the kidney against the development of diabetic nephropathy (DN) induced by a combination of a high-fat diet and streptozotocin. Rats were either injected with veh icle (control group) or with a single injection of streptozotocin (STZ) (50 mg/kg) two weeks after being fed on a high-fat diet (HFD ) (model group) and continued on HFD until being sacrificed 10 weeks post diabetic induction. The protective group that also fed on a HF D f r 12 weeks was put on metformin (200 mg/kg/day) two weeks before STZ injection and continued on metformin until the sacrifice day. Harvested kidney tissues were examined by light microscopy after staining with hematoxylin and eosin (H&E) and periodic acid Sc h ff (PAS). Blood samples were assayed for sugar, urea, creatinine, and biomarkers of inflammation. Compared to a normal tissue hist ology in the control group, there was a profound damage to the kidney in the model group as demonstrated by markedly dilated capsular spa e, increased mesangial matrix expansion, congested blood vessels, and many tubular epithelial cells showing small pyknotic nuclei and vacuolated cytoplasm, which were significantly but not completely protected by metformin. Our findings also show that metformin significantly inhibited the inflammatory biomarkers, tumor necrosis factor-alpha (TNFα) and C-reactive protein (CRP) induced by diabetes and HFD as well as significantly inhibiting blood sugar, urea, and creatinine. However, the levels of TNFα, CRP, glucose, and creatinine in the metformin-treated group was still significant to the control group. Thus, we demonstrated an efficient but no t complete protection by metformin pretreatment against DN induced by a combination of HFD and streptozotocin in rats.
Canadian Journal of Physiology and Pharmacology | 2018
Sherif S. Hassan; Ahmer Razzaque; Zulfiqar Ahmad; Vanessa Pazdernik; Shaimaa Nasr Amin
Atorvastatin (ATO) was commonly used to lower blood cholesterol, but it caused harmful effects to organs, including the liver. Thymoquinone (TQ), a prominent constituent of Nigella sativa, has antioxidant, antiinflammatory, antiapoptotic, antimicrobial, and anticancer activity. The current study investigated the mechanism of ATO-induced hepatotoxicity, whether posttreatment TQ could reverse ATO-induced hepatic injury, and the mechanism of action of TQ as a hepatoprotective agent. Forty adult male Sprague Dawley rats were divided into four equal groups: control, TQ-treated, ATO-treated, and combined ATO/TQ-treated. Rats were treated for 8 weeks and 10 days and euthanized by cervical dislocation 3 days after the last treatment. Blood samples and livers were tested for liver enzymes, oxidative stress, and apoptosis markers and used for histopathological and ultrastructural examination. The ATO-treated group showed an increase in liver enzymes, decreases in reduced glutathione and catalase, and increases in the malondialdehyde lipid peroxidation marker, protein carbonylation, and caspase 3 activity. Posttreatment TQ in the ATO/TQ-treated group seemed to reverse these changes. Histopathological and ultrastructural examination supported these data. Results from the current study suggested that posttreatment TQ may reverse oxidative stress injury in rat liver produced by ATO, suggesting a potential clinical application of using TQ to prevent ATO-induced hepatic injury.
Archives of Physiology and Biochemistry | 2018
Shaimaa Nasr Amin; Sherif S. Hassan; Laila A. Rashed
Abstract Background: Parkinson’s disease is a progressive neurodegenerative disorder. Aspartame (l-aspartyl-l-phenylalanine methyl ester), a low calorie sweetener used in foods and beverages. Objectives: This study investigated the effect of chronic aspartame intake on Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Method: Forty-eight mice (24 males and 24 females): control, aspartame, MPTP, and aspartame + MPTP groups tested by Y-maze, stepping, forced swimming and olfactory preference tests. Brain tissues examined for dopamine content, tyrosine hydroxylase, inducible nitric oxide synthase (iNOS), glutathione peroxidase, phosphorylated tau and α-synuclein protein. Histopathological evaluation of brain sections at the level of basal ganglia was done. Results: Decreased dopamine content, tyrosine hydroxylase expression, glutathione peroxidase expression and increased iNOS, tau and α-synuclein expression in groups received aspartame, MPTP or both agents simultaneously in both males and females group. Conclusions: Increased dopaminergic degeneration and complications with chronic aspartame consumption and more injury in male groups.
Anatomy & Physiology: Current Research | 2016
Shaimaa Nasr Amin; Sarah Mahmoud Gamal; Rabab A. Rasheed; Laila A. Rashed
Background: Stress exposure has negative impact on different body systems including the liver. Acute restraint stress has clinical implications in both medical and surgical practice. Ghrelin is the gut hormone has been shown to provide protection to different organs under various pathological conditions. In this work we evaluated the effect of ghrelin in animal models exposed to acute restraint stress. Methods: Thirty male albino rats divided into three groups; control group, group exposed to acute restraint stress and group treated with ghrelin in addition to exposure to acute restraint stress. Serum levels of cortisol, aspartate aminotransferase and alanine aminotransferase. Histological evaluation of the liver samples was done by Hematoxylin and eosin stain, Massons trichrome stain and morphometric measurement of connective tissue area. Results: The group treated with ghrelin and exposed to acute restraint stress showed less injury on microscopic evaluation and less fibrosis compared to acute restraint stress group. However; serum cortisol, aspartate aminotransferase and alanine aminotransferase showed no significant difference. Conclusion: Ghrelin offered hepatoprotective effect on the liver in rats exposed to acute restraint stress as it improved the microscopic picture and decreased the fibrosis.