Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shan Dong is active.

Publication


Featured researches published by Shan Dong.


Nature | 2014

The contribution of de novo coding mutations to autism spectrum disorder

Ivan Iossifov; Brian J. O'Roak; Stephan J. Sanders; Michael Ronemus; Niklas Krumm; Dan Levy; Holly A.F. Stessman; Kali Witherspoon; Laura Vives; Karynne E. Patterson; Joshua D. Smith; Bryan W. Paeper; Deborah A. Nickerson; Jeanselle Dea; Shan Dong; Luis E. Gonzalez; Jeffrey D. Mandell; Shrikant Mane; Catherine Sullivan; Michael F. Walker; Zainulabedin Waqar; Liping Wei; A. Jeremy Willsey; Boris Yamrom; Yoon Lee; Ewa Grabowska; Ertugrul Dalkic; Zihua Wang; Steven Marks; Peter Andrews

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Neuron | 2015

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

Stephan J. Sanders; Xin He; A. Jeremy Willsey; A. Gulhan Ercan-Sencicek; Kaitlin E. Samocha; A. Ercument Cicek; Vanessa Hus Bal; Somer L. Bishop; Shan Dong; Arthur P. Goldberg; Cai Jinlu; John F. Keaney; Lambertus Klei; Jeffrey D. Mandell; Daniel Moreno-De-Luca; Christopher S. Poultney; Elise B. Robinson; Louw Smith; Tor Solli-Nowlan; Mack Y. Su; Nicole A. Teran; Michael F. Walker; Donna M. Werling; Arthur L. Beaudet; Rita M. Cantor; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; Catherine Lord; Jennifer K. Lowe

Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).


Cell Reports | 2014

De Novo Insertions and Deletions of Predominantly Paternal Origin Are Associated with Autism Spectrum Disorder

Shan Dong; Michael F. Walker; Nicholas Carriero; Michael DiCola; A. Jeremy Willsey; Adam Yongxin Ye; Zainulabedin Waqar; Luis E. Gonzalez; John D. Overton; Stephanie Frahm; John F. Keaney; Nicole A. Teran; Jeanselle Dea; Jeffrey D. Mandell; Vanessa Hus Bal; Catherine Sullivan; Nicholas M. DiLullo; Rehab O. Khalil; Jake Gockley; Zafer Yüksel; Sinem M. Sertel; A. Gulhan Ercan-Sencicek; Abha R. Gupta; Shrikant Mane; Michael Sheldon; Andrew I. Brooks; Kathryn Roeder; Bernie Devlin; Matthew W. State; Liping Wei

Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR = 1.6; 95% CI = 1.0-2.7; p = 0.03), are more common in female probands (p = 0.02), are enriched among genes encoding FMRP targets (p = 6 × 10(-9)), and arise predominantly on the paternal chromosome (p < 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release.


Molecular Autism | 2015

The female protective effect in autism spectrum disorder is not mediated by a single genetic locus

Jake Gockley; A. Jeremy Willsey; Shan Dong; Joseph D. Dougherty; John N. Constantino; Stephan J. Sanders

BackgroundA 4:1 male to female sex bias has consistently been observed in autism spectrum disorder (ASD). Epidemiological and genetic studies suggest a female protective effect (FPE) may account for part of this bias; however, the mechanism of such protection is unknown. Quantitative assessment of ASD symptoms using the Social Responsiveness Scale (SRS) shows a bimodal distribution unique to females in multiplex families. This leads to the hypothesis that a single, common genetic locus on chromosome X might mediate the FPE and produce the ASD sex bias. Such a locus would represent a major therapeutic target and is likely to have been missed by conventional genome-wide association study (GWAS) analysis.MethodsTo explore this possibility, we performed an association study in affected versus unaffected females, considering three tiers of single nucleotide polymorphisms (SNPs) as follows: 1) regions of chromosome X that escape X-inactivation, 2) all of chromosome X, and 3) genome-wide.ResultsNo evidence of a SNP meeting the criteria for a single FPE locus was observed, despite the analysis being well powered to detect this effect.ConclusionsThe results do not support the hypothesis that the FPE is mediated by a single genetic locus; however, this does not exclude the possibility of multiple genetic loci playing a role in the FPE.


Nature Neuroscience | 2017

Whole genome sequencing in psychiatric disorders: the WGSPD consortium

Stephan J. Sanders; Benjamin M. Neale; Hailiang Huang; Donna M. Werling; Joon Yong An; Shan Dong; Gonçalo R. Abecasis; P. Alexander Arguello; John Blangero; Michael Boehnke; Mark J. Daly; Kevin Eggan; Daniel H. Geschwind; David C. Glahn; David B. Goldstein; Raquel E. Gur; Robert E. Handsaker; Steven A. McCarroll; Roel A. Ophoff; Aarno Palotie; Carlos N. Pato; Chiara Sabatti; Matthew W. State; A. Jeremy Willsey; Steven E. Hyman; Anjene Addington; Thomas Lehner; Nelson B. Freimer

As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome through pilot WGS projects will be critical to determining which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The Whole Genome Sequencing for Psychiatric Disorders Consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.


Nature Genetics | 2018

An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Lingxue Zhu; Joseph T. Glessner; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eirene Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; H. Wang; Benjamin Currall; Xuefang Zhao; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Rachita Yadav; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; Matthew J. Waterman

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.This study presents a framework to evaluate rare and de novo variation from whole-genome sequencing (WGS). The work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.


bioRxiv | 2017

Limited contribution of rare, noncoding variation to autism spectrum disorder from sequencing of 2,076 genomes in quartet families

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Joseph T. Glessner; Lingxue Zhu; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eiriene-Chloe Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; Benjamin Currall; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; H. Wang; Mathew J Waterman; Xin He; Arnold R. Kriegstein

Genomic studies to date in autism spectrum disorder (ASD) have largely focused on newly arising mutations that disrupt protein coding sequence and strongly influence risk. We evaluate the contribution of noncoding regulatory variation across the size and frequency spectrum through whole genome sequencing of 519 ASD cases, their unaffected sibling controls, and parents. Cases carry a small excess of de novo (1.02-fold) noncoding variants, which is not significant after correcting for paternal age. Assessing 51,801 regulatory classes, no category is significantly associated with ASD after correction for multiple testing. The strongest signals are observed in coding regions, including structural variation not detected by previous technologies and missense variation. While rare noncoding variation likely contributes to risk in neurodevelopmental disorders, no category of variation has impact equivalent to loss-of-function mutations. Average effect sizes are likely to be smaller than that for coding variation, requiring substantially larger samples to quantify this risk.


Nature Neuroscience | 2018

Publisher Correction: Whole genome sequencing in psychiatric disorders: the WGSPD consortium

Stephan J. Sanders; Benjamin M. Neale; Hailiang Huang; Donna M. Werling; Joon Yong An; Shan Dong; Gonçalo R. Abecasis; P. Alexander Arguello; John Blangero; Michael Boehnke; Mark J. Daly; Kevin Eggan; Daniel H. Geschwind; David C. Glahn; David B. Goldstein; Raquel E. Gur; Robert E. Handsaker; Steven A. McCarroll; Roel A. Ophoff; Aarno Palotie; Carlos N. Pato; Chiara Sabatti; Matthew W. State; A. Jeremy Willsey; Steven E. Hyman; Anjene Addington; Thomas Lehner; Nelson B. Freimer

In the version of this article initially published, the consortium authorship and corresponding authors were not presented correctly. In the PDF and print versions, the Whole Genome Sequencing for Psychiatric Disorders (WGSPD) consortium was missing from the author list at the beginning of the paper, where it should have appeared as the seventh author; it was present in the author list at the end of the paper, but the footnote directing readers to the Supplementary Note for a list of members was missing. In the HTML version, the consortium was listed as the last author instead of as the seventh, and the line directing readers to the Supplementary Note for a list of members appeared at the end of the paper under Author Information but not in association with the consortium name itself. Also, this line stated that both member names and affiliations could be found in the Supplementary Note; in fact, only names are given. In all versions of the paper, the corresponding author symbols were attached to A. Jeremy Willsey, Steven E. Hyman, Anjene M. Addington and Thomas Lehner; they should have been attached, respectively, to Steven E. Hyman, Anjene M. Addington, Thomas Lehner and Nelson B. Freimer. As a result of this shift, the respective contact links in the HTML version did not lead to the indicated individuals. The errors have been corrected in the HTML and PDF versions of the article.


Cell Reports | 2018

De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis

Sheng Wang; Jeffrey D. Mandell; Yogesh Kumar; Nawei Sun; Montana T. Morris; Juan Arbelaez; Cara Nasello; Shan Dong; Clif Duhn; Xin Zhao; Zhiyu Yang; Shanmukha S. Padmanabhuni; Dongmei Yu; Robert A. King; Andrea Dietrich; Najah Khalifa; Niklas Dahl; Alden Y. Huang; Benjamin M. Neale; Giovanni Coppola; Carol A. Mathews; Jeremiah M. Scharf; Thomas V. Fernandez; Joseph D. Buxbaum; Silvia De Rubeis; Dorothy E. Grice; Jinchuan Xing; Gary A. Heiman; Jay A. Tischfield; Peristera Paschou

SUMMARY We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk.


Cell | 2013

Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism

A. Jeremy Willsey; Stephan J. Sanders; Mingfeng Li; Shan Dong; Andrew T.N. Tebbenkamp; Rebecca A. Muhle; Steven K. Reilly; Leon Lin; Sofia Fertuzinhos; Jeremy A. Miller; Candace Bichsel; Wei Niu; Justin Cotney; A. Gulhan Ercan-Sencicek; Jake Gockley; Abha R. Gupta; Wenqi Han; Xin He; Ellen J. Hoffman; Lambertus Klei; Jing Lei; Wenzhong Liu; Li Liu; Cong Lu; Xuming Xu; Ying Zhu; Shrikant Mane; Ed Lein; Liping Wei; James P. Noonan

Collaboration


Dive into the Shan Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanselle Dea

University of California

View shared research outputs
Top Co-Authors

Avatar

Joon Yong An

University of California

View shared research outputs
Top Co-Authors

Avatar

Lambertus Klei

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge