Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shanchun Guo is active.

Publication


Featured researches published by Shanchun Guo.


Biochimica et Biophysica Acta | 2011

Role of Notch and its oncogenic signaling crosstalk in breast cancer.

Shanchun Guo; Mingli Liu; Ruben R. Gonzalez-Perez

The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment.


Biochimica et Biophysica Acta | 2010

Vascular Endothelial Growth Factor Receptor -2 in Breast Cancer

Shanchun Guo; Laronna S. Colbert; Miles Fuller; Yuanyuan Zhang; Ruben R. Gonzalez-Perez

Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.


Cellular Signalling | 2010

Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation

Ruben R. Gonzalez-Perez; Yanbo Xu; Shanchun Guo; Amber Watters; Weiqiang Zhou; Samuel Joseph Leibovich

High levels of VEGF and leptin are strongly linked to worse prognosis of breast cancer. Leptin signalling upregulates VEGF in human and mouse mammary tumor cells (MT), but the specific molecular mechanisms are largely unknown. Pharmacologic and genetic approaches were used to dissect the mechanism of leptin regulation of VEGF protein and mRNA in MT (4T1, EMT6 and MMT). A series of VEGF-promoter Luc-reporters (full-length and transcription factor-binding deletions) were transfected into MT to analyze leptin regulation of VEGF transcription. Deletion analysis of VEGF promoter and RNA knockdown shows that HIF-1alpha and NFkappaB are essentials for leptin regulation of VEGF. Leptin activation of HIF-1alpha was mainly linked to canonic (MAPK, PI-3K) and non-canonic (PKC, JNK and p38 MAP) signalling pathways. Leptin non-canonic signalling pathways (JNK, p38 MAP and to less extent PKC) were linked to NFkappaB activation. SP1 was involved in leptin regulation of VEGF in 4T1 cells. AP1 was not involved and AP2 repressed leptin-induced increase of VEGF. Overall, these data suggest that leptin signalling regulates VEGF mainly through HIF-1alpha and NFkappaB. These results delineate a comprehensive mechanism for leptin regulation of VEGF in MT. Disruption of leptin signalling could be used as a novel way to treat breast cancer.


Biochimica et Biophysica Acta | 2012

Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells

Shanchun Guo; Mingli Liu; Guangdi Wang; Marta Torroella-Kouri; Ruben R. Gonzalez-Perez

Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.


PLOS ONE | 2011

Notch, IL-1 and leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer.

Shanchun Guo; Ruben R. Gonzalez-Perez

High levels of pro-angiogenic factors, leptin, IL-1, Notch and VEGF (ligands and receptors), are found in breast cancer, which is commonly correlated with metastasis and lower survival of patients. We have previously reported that leptin induces the growth of breast cancer and the expression of VEGF/VEGFR-2 and IL-1 system. We hypothesized that Notch, IL-1 and leptin crosstalk outcome (NILCO) plays an essential role in the regulation of leptin-mediated induction of proliferation/migration and expression of pro-angiogenic molecules in breast cancer. To test this hypothesis, leptins effects on the expression and activation of Notch signaling pathway and VEGF/VEGFR-2/IL-1 were determined in mouse (4T1, EMT6 and MMT) breast cancer cells. Remarkably, leptin up-regulated Notch1-4/JAG1/Dll-4, Notch target genes: Hey2 and survivin, together with IL-1 and VEGF/VEGFR-2. RNA knockdown and pharmacological inhibitors of leptin signaling significantly abrogated activity of reporter gene-luciferase CSL (RBP-Jk) promoter, showing that it was linked to leptin-activated JAK2/STAT3, MAPK, PI-3K/mTOR, p38 and JNK signaling pathways. Interestingly, leptin upregulatory effects on cell proliferation/migration and pro-angiogenic factors Notch, IL-1 and VEGF/VEGFR-2 were abrogated by a γ-secretase inhibitor, DAPT, as well as siRNA against CSL. In addition, blockade of IL-1R tI inhibited leptin-induced Notch, Hey2 and survivin as well as VEGF/VEGFR-2 expression. These data suggest leptin is an inducer of Notch (expression/activation) and IL-1 signaling modulates leptin effects on Notch and VEGF/VEGFR-2. We show for the first time that a novel unveiled crosstalk between Notch, IL-1 and leptin (NILCO) occurs in breast cancer. Leptin induction of proliferation/migration and upregulation of VEGF/VEGFR-2 in breast cancer cells were related to an intact Notch signaling axis. NILCO could represent the integration of developmental, pro-inflammatory and pro-angiogenic signals critical for leptin-induced cell proliferation/migration and regulation of VEGF/VEGFR-2 in breast cancer. Targeting NILCO might help to design new pharmacological strategies aimed at controlling breast cancer growth and angiogenesis.


PLOS ONE | 2012

GREB1 Functions as a Growth Promoter and Is Modulated by IL6/STAT3 in Breast Cancer

Mingli Liu; Guangdi Wang; Carmen Gomez-Fernandez; Shanchun Guo

Background Growth Regulation by Estrogen in Breast cancer (GREB1) was an estrogen receptor (ER) target gene, and GREB1 expression inversely correlated with HER2 status, possibly as a surrogate marker for ER status and a predictor for tamoxifen resistance in breast cancer patients. In the present study, we examine the function and regulation of GREB1 in breast cancer, with the goal to develop GREB1 as a biomarker in breast cancer with de novo and acquired tamoxifen resistance. Methods We overexpressed GREB1 using adenovirus containing the full length GREB1 cDNA (Ad-GREB1) in breast cancer cell lines. The soft agar assay was used as a measure of anchorage independent growth. The effects of GREB1 on cell proliferation in MCF-7 cells transduced with Ad-GREB1 were also measured by the me olic activity using AlamarBlue assay. We tested whether there was interaction between STAT3 and ER, which could repress GREB1 expression by immunoprecipitation assay. The effects of IL-6/JAK/STAT3 cascade activation on estrogen-induced GREB1 promoter activity were determined by luciferase assay and those on gene expression were measured by real time reverse transcription polymerase chain reaction (qRT-PCR). Results We found that the ability of breast cancer cells to grow in soft agar is enhanced following GREB1 transfection. In MCF-7 cells transduced with Ad-GREB1 or transfected with siRNA GREB1, the metabolic activity was increased or completely abolished, suggesting that GREB1 may function as a growth promoter in breast cancer. E2 treatment increased GREB1 promoter luciferase activity. IL-6 inhibited E2-induced GREB1 transcription activity and GREB1 mRNA expression. Constitutively expressing active STAT3 construct (STAT3-C) dramatically decreased GREB1 transcription. Conclusions These data indicate that overexpression of GREB1 promotes cell proliferation and increases the clonogenic ability in breast cancer cells. Moreover, Il6/STAT3 modulates estrogen-induced GREB1 transcriptional activity in breast cancer cells.


Biochimica et Biophysica Acta | 2013

Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells

Weiqiang Zhou; Guangdi Wang; Shanchun Guo

Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.


Drug Design Development and Therapy | 2013

Advances in the proteomic discovery of novel therapeutic targets in cancer

Shanchun Guo; Jin Zou; Guangdi Wang

Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.


Scientific Reports | 2016

Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells

Weiqiang Zhou; Xiuyan Feng; Han Han; Shanchun Guo; Guangdi Wang

Previous studies showed that either histone deacetylase (HDAC) inhibitors or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells including breast cancer. However, the underling mechanisms of combining HDAC inhibitors with TRAIL in the treatment of breast cancer are poorly understood. In this study, we determined the ability of SAHA and TRAIL as single agents or in combination to inhibit the growth and survival of MCF-7 and MDA-MB-231 breast cancer cells. Our results demonstrate that the distinct effects of SAHA or TRAIL individually and in combination on the proliferation, cell viability, apoptosis, cell cycle distribution, and morphological changes of MDA-MB-231 and MCF-7 cells. We further determined the different effects of SAHA or TRAIL alone and combining SAHA with TRAIL on the expression of a number of apoptosis-related molecules, cell cycle, growth factors and their receptors in cancer cells. Our results demonstrated that the combinatorial treatment of SAHA and TRAIL may target multiple pathways and serve as an effective therapeutic strategy against breast cancer. An improved understanding of the molecular mechanisms may facilitate either SAHA or TRAIL targeted use and the selection of suitable combinations.


Journal of Medicinal Chemistry | 2016

Fulvestrant-3 Boronic Acid (ZB716): An Orally Bioavailable Selective Estrogen Receptor Downregulator (SERD)

Jiawang Liu; Shilong Zheng; Victoria L. Akerstrom; Chester Yuan; Youning Ma; Qiu Zhong; Changde Zhang; Qiang Zhang; Shanchun Guo; Peng Ma; Elena V. Skripnikova; Melyssa R. Bratton; Antonio Pannuti; Lucio Miele; Thomas E. Wiese; Guangdi Wang

Orally bioavailable SERDs may offer greater systemic drug exposure, improved clinical efficacy, and more durable treatment outcome for patients with ER-positive endocrine-resistant breast cancer. We report the design and synthesis of a boronic acid modified fulvestrant (5, ZB716), which binds to ERα competitively (IC50 = 4.1 nM) and effectively downregulates ERα in both tamoxifen-sensitive and tamoxifen-resistant breast cancer cells. Furthermore, It has superior oral bioavailability (AUC = 2547.1 ng·h/mL) in mice, indicating its promising clinical utility as an oral SERD.

Collaboration


Dive into the Shanchun Guo's collaboration.

Top Co-Authors

Avatar

Guangdi Wang

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingli Liu

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shilong Zheng

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Changde Zhang

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Jiawang Liu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Corey Gillespie

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qiu Zhong

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Laronna S. Colbert

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhang

Xavier University of Louisiana

View shared research outputs
Researchain Logo
Decentralizing Knowledge