Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane A. Snyder is active.

Publication


Featured researches published by Shane A. Snyder.


Environmental Engineering Science | 2003

Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry

Shane A. Snyder; Paul Westerhoff; Yeomin Yoon; David L. Sedlak

For over 70 years, scientists have reported that certain synthetic and natural compounds could mimic natural hormones in the endocrine systems of animals. These substances are now collectively known as endocrine-disrupting compounds (EDCs), and have been linked to a variety of adverse effects in both humans and wildlife. More recently, pharmaceuticals and personal care products (PPCPs) have been discovered in various surface and ground waters, some of which have been linked to ecological impacts at trace concentrations. The majority of EDCs and PPCPs are more polar than traditional contaminants and several have acidic or basic functional groups. These properties, coupled with occurrence at trace levels (i.e., <1 μg/L), create unique challenges for both removal processes and analytical detection. Reports of EDCs and PPCPs in water have raised substantial concern among the public and regulatory agencies; however, very little is known about the fate of these compounds during drinking and wastewater treatment...


Critical Reviews in Environmental Science and Technology | 2006

Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment

Ho Kyong Shon; S. Vigneswaran; Shane A. Snyder

Wastewater reuse is being increasingly emphasized as a strategy for conservation of limited resources of freshwater and as a mean of safeguarding the aquatic environment due to contaminants present in wastewater. Although secondary and tertiary treated wastewater is often discharged into surface waters, it cannot be reused without further treatment. One of the parameters of concern for human and environmental health is components of organic matter originating from wastewater treatment plant (WWTP) effluents. This effluent organic matter (EfOM) should be carefully characterized in order to find an optimum treatment method for water reuse. This review presents the components of EfOM present in WWTP effluents and various treatment methods that may be employed for reduction of EfOM. These processes include flocculation, adsorption, biofiltration, ion exchange, advanced oxidation process, and membrane technology. The removal efficiency is discussed in terms of removal of total organic carbon, endocrine-disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs), different polarity fractions (such as hydrophobic and hydrophilic), and molecular weight distribution of organic matter.


Ozone-science & Engineering | 2006

Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater

Shane A. Snyder; Eric C. Wert; David J. Rexing; Ronald E. Zegers; Douglas Drury

The oxidative removal of a diverse group of trace organic contaminants from surface water and wastewater was evaluated using ozone (O3) and O3 combined with hydrogen peroxide (O3/H2O2). Target compounds included estrogenic and androgenic steroids, pharmaceuticals, pesticides, and industrial chemicals. Bench- and pilot- scale experiments were conducted with surface water spiked with the target compounds and wastewater effluent containing ambient concentrations of target compounds. Full-scale water treatment plants were sampled before and after ozonation to determine if bench- and pilot-scale results accurately predict full-scale removal. In both drinking water and wastewater experiments, the majority of target compounds were removed by greater than 90% at O3 exposures commonly used for disinfection. Atrazine, iopromide, meprobamate, and tris-chloroethylphosphate (TCEP) were the most recalcitrant compounds to oxidize using O3, with removals generally less than 50%. The addition of H2O2 for advanced oxidation was of little benefit for contaminant removal as compared to O3 alone. O3/H2O2 provided a marginal increase in the removal of dilantin, diazepam, DEET, iopromide, and meprobamate, while decreasing the removal efficacy of pentoxifylline, caffeine, testosterone, progesterone, and androstenedione. In wastewater experiments, O3 and O3/H2O2 were shown to remove in vitro estrogenicity. Collectively, these data provide evidence that O3 is a highly effective oxidant for removing the majority of trace organic contaminants from water.


Environment International | 2013

State of knowledge and concerns on cyanobacterial blooms and cyanotoxins

Sylvain Merel; David Walker; Ruth Chicana; Shane A. Snyder; Estelle Baurès; Olivier Thomas

Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earths atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs. Cyanobacterial blooms usually occur according to a combination of environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, water movement, stagnation and residence time, as well as several other variables. These environmental variables, in turn, have promoted the evolution and biosynthesis of strain-specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during the exponential growth phase. Release of toxins into water can occur during cell death or senescence but can also be due to evolutionary-derived or environmentally-mediated circumstances such as allelopathy or relatively sudden nutrient limitation. Consequently, when cyanobacterial blooms occur in drinking water resources, treatment has to remove both cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins previously released. Cells are usually removed with limited lysis by physical processes such as clarification or membrane filtration. However, aqueous toxins are usually removed by both physical retention, through adsorption on activated carbon or reverse osmosis, and chemical oxidation, through ozonation or chlorination. While the efficient oxidation of the more common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been extensively reported, the chemical and toxicological characterization of their by-products requires further investigation. In addition, future research should also investigate the removal of poorly considered cyanotoxins (β-methylamino-alanine, lyngbyatoxin or aplysiatoxin) as well as the economic impact of blooms.


Science of The Total Environment | 2010

Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea)

Yeomin Yoon; Jaena Ryu; Jeill Oh; Byeong Gyu Choi; Shane A. Snyder

The occurrence of 31 selected endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in Korean surface waters was investigated. The area was selected since there is a lack of information in the Seoul area on the suspected contamination of rivers by micropollutants, although over 99% of drinking water is produced from surface waters in this area that has a population of approximately 15 million inhabitants. Samples were collected from upstream/downstream and effluent-dominated creeks along the Han River, Seoul (South Korea) and analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Most target compounds were detected in both the Han River samples (63%) and the effluent-dominated creek samples (79%). Iopromide, atenolol, TCPP, TECP, musk ketone, naproxen, DEET, carbamazepine, caffeine, and benzophenone were frequently detected in both river and creek samples, although the mean concentrations in effluent-dominated creek samples (102 ng/L-3745 ng/L) were significantly higher than those in river samples (56 ng/L-1013 ng/L). However, the steroid hormones 17beta-estradiol, 17alpha-ethynylestradiol, progesterone, and testosterone, were not detected (<1 ng/L) in both the river and creek samples. Numerous target compounds (15) were found to be positively correlated (over 0.8) to the conventional water quality parameters (chemical oxygen demand, biochemical oxygen demand, dissolved organic carbon, and ultraviolet absorbance). Results of this study provide increasing evidence that certain EDCs and PPCPs commonly occur in the Han River as the result of wastewater outfalls.


Water Research | 2003

HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon

Yeomin Yoon; Paul Westerhoff; Shane A. Snyder; Mario Esparza

The adsorption of three estrogenic compounds (bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynyl estradiol (EE2)) on several powdered activated carbons (PAC) was investigated. Without preconcentration, method detection limits (MDL) using high-performance liquid chromatography (HPLC) with fluorescence detection at an excitation wavelength of 280 nm and an emission wavelength of 310 nm were 0.88, 1.15, and 0.96 nM for BPA, E2, and EE2, respectively. Compound recoveries were >90% in raw drinking water matrices. PAC screening studies (six PAC brands) indicated all three compounds were removed by PAC, but the percentage removal ranged from 31% to >99% based upon PAC type/dosage and presence/absence of natural organic matter. The order of removal (E2>EE2>BPA) corresponded with logK(ow) values for the compounds (3.1-4.0, 3.7-3.9, 3.3, respectively). Kinetic and PAC dose-response experiments were conducted with the two best performing PACs. Increasing contact time and PAC dose improved compound removal. Freundlich isotherm parameters were fit to the experimental data. This study confirms that PAC treatment is feasible for >99% removal of three estrogenic compounds from raw drinking waters that may be at risk for containing such compounds, at least at initial concentration of 500 ng/l and higher.


Environmental Science & Technology | 2014

Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays

Beate I. Escher; Mayumi Allinson; Rolf Altenburger; Peter A. Bain; Patrick Balaguer; Wibke Busch; Jordan Crago; Nancy D. Denslow; Elke Dopp; Klára Hilscherová; Andrew R. Humpage; Anu Kumar; Marina Grimaldi; B. Sumith Jayasinghe; Barbora Jarošová; Ai Jia; Sergei S. Makarov; Keith A. Maruya; Alex Medvedev; Alvine C. Mehinto; Jamie E. Mendez; Anita H. Poulsen; Erik Prochazka; Jessica Richard; Andrea Schifferli; Daniel Schlenk; Stefan Scholz; Fujio Shiraishi; Shane A. Snyder; Guanyong Su

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.


Water Research | 2009

Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water

Mark J. Benotti; Benjamin D. Stanford; Eric C. Wert; Shane A. Snyder

A photocatalytic reactor membrane pilot system, employing UV/TiO(2) photocatalysis, was evaluated for its ability to remove thirty-two pharmaceuticals, endocrine disrupting compounds, and estrogenic activity from water. Concentrations of all compounds decreased following treatment, and removal followed pseudo-first-order kinetics as a function of the amount of treatment. Twenty-nine of the targeted compounds in addition to total estrogenic activity were greater than 70% removed while only three compounds were less than 50% removed following the highest level of treatment (4.24 kW h/m(3)). No estrogenically active transformation products were formed during treatment. Additionally, the unit was operated in photolytic mode (UV only) and photolytic plus H(2)O(2) mode (UV/H(2)O(2)) to determine the relative amount of energy required. Based on the electrical energy per order (EEO), the unit achieved the greatest efficiency when operated in photolytic plus H(2)O(2) mode for the conditions tested.


Water Research | 2010

Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater

Fernando L. Rosario-Ortiz; Eric C. Wert; Shane A. Snyder

Advanced oxidation treatment using low pressure UV light coupled with hydrogen peroxide (UV/H(2)O(2)) was evaluated for the oxidation of six pharmaceuticals in three wastewater effluents. The removal of these six pharmaceuticals (meprobamate, carbamazepine, dilantin, atenolol, primidone and trimethoprim) varied between no observed removal and >90%. The role of the water quality (i.e., alkalinity, nitrite, and specifically effluent organic matter (EfOM)) on hydroxyl radical (OH) exposure was evaluated and used to explain the differences in pharmaceutical removal between the three wastewaters. Results indicated that the efficacy of UV/H(2)O(2) treatment for the removal of pharmaceuticals from wastewater was a function of not only the concentration of EfOM but also its inherent reactivity towards OH. The removal of pharmaceuticals also correlated with reductions in ultraviolet absorbance at 254nm (UV(254)), which offers utilities a surrogate to assess pharmaceutical removal efficiency during UV/H(2)O(2) treatment.


Water Research | 2009

Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater.

Eric C. Wert; Fernando L. Rosario-Ortiz; Shane A. Snyder

Three tertiary-treated wastewater effluents were evaluated to determine the impact of wastewater quality (i.e. effluent organic matter (EfOM), nitrite, and alkalinity) on ozone (O(3)) decomposition and subsequent removal of 31 organic contaminants including endocrine disrupting compounds, pharmaceuticals, and personal care products. The O(3) dose was normalized based upon total organic carbon (TOC) and nitrite to allow comparison between the different wastewaters with respect to O(3) decomposition. EfOM with higher molecular weight components underwent greater transformation, which corresponded to increased O(3) decomposition when compared on a TOC basis. Hydroxyl radical (()OH) exposure, measured by parachlorobenzoic acid (pCBA), showed that limited ()OH was available for contaminant destruction during the initial stage of O(3) decomposition (t<30s) due to the effect of the scavenging by the water quality. Advanced oxidation using O(3) and hydrogen peroxide did not increase the net production of ()OH compared to O(3) under the conditions studied. EfOM reactivity impacted the removal of trace contaminants when evaluated based on the O(3):TOC ratio. Trace contaminants with second order reaction rate constants with O(3)(k(O)(3))>10(5)M(-1)s(-1) and ()OH (k(OH))>10(9)M(-1)s(-1), including carbamazepine, diclofenac, naproxen, sulfamethoxazole, and triclosan, were >95% removed independent of water quality when the O(3) exposure (integralO(3)t) was measurable (0-0.8mgmin/L). O(3) exposure would be a conservative surrogate to assess the removal of trace contaminants that are fast-reacting with O(3). Removal of contaminants with k(O)(3) < 10M(-1)S(-1) , and k(OH)>10(9)M(-1)s(-1), including atrazine, iopromide, diazepam, and ibuprofen, varied when O(3) exposure could not be measured, and appeared to be dependent upon the compound specific k(OH). Atrazine, diazepam, ibuprofen and iopromide provided excellent linear correlation with pCBA (R(2)>0.86) making them good indicators of ()OH availability.

Collaboration


Dive into the Shane A. Snyder's collaboration.

Top Co-Authors

Avatar

Brett J. Vanderford

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar

Erin M. Snyder

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Eric C. Wert

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Trenholm

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeomin Yoon

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Stanford

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge