Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane B. Eisenman is active.

Publication


Featured researches published by Shane B. Eisenman.


international conference on embedded networked sensor systems | 2008

Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application

Emiliano Miluzzo; Nicholas D. Lane; Kristóf Fodor; Ronald A. Peterson; Hong Lu; Mirco Musolesi; Shane B. Eisenman; Xiao Zheng; Andrew T. Campbell

We present the design, implementation, evaluation, and user ex periences of theCenceMe application, which represents the first system that combines the inference of the presence of individuals using off-the-shelf, sensor-enabled mobile phones with sharing of this information through social networking applications such as Facebook and MySpace. We discuss the system challenges for the development of software on the Nokia N95 mobile phone. We present the design and tradeoffs of split-level classification, whereby personal sensing presence (e.g., walking, in conversation, at the gym) is derived from classifiers which execute in part on the phones and in part on the backend servers to achieve scalable inference. We report performance measurements that characterize the computational requirements of the software and the energy consumption of the CenceMe phone client. We validate the system through a user study where twenty two people, including undergraduates, graduates and faculty, used CenceMe continuously over a three week period in a campus town. From this user study we learn how the system performs in a production environment and what uses people find for a personal sensing system.


international conference on embedded networked sensor systems | 2003

CODA: congestion detection and avoidance in sensor networks

Chieh-Yih Wan; Shane B. Eisenman; Andrew T. Campbell

Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the sensing application. It is during these periods of event impulses that the likelihood of congestion is greatest and the information in transit of most importance to users. To address this challenge we propose an energy efficient congestion control scheme for sensor networks called CODA (COngestion Detection and Avoidance) that comprises three mechanisms: (i) receiver-based congestion detection; (ii) open-loop hop-by-hop backpressure; and (iii) closed-loop multi-source regulation. We present the detailed design, implementation, and evaluation of CODA using simulation and experimentation. We define two important performance metrics (i.e., energy tax and fidelity penalty) to evaluate the impact of CODA on the performance of sensing applications. We discuss the performance benefits and practical engineering challenges of implementing CODA in an experimental sensor network testbed based on Berkeley motes using CSMA. Simulation results indicate that CODA significantly improves the performance of data dissemination applications such as directed diffusion by mitigating hotspots, and reducing the energy tax with low fidelity penalty on sensing applications. We also demonstrate that CODA is capable of responding to a number of congestion scenarios that we believe will be prevalent as the deployment of these networks accelerates.


IEEE Internet Computing | 2008

The Rise of People-Centric Sensing

Andrew T. Campbell; Shane B. Eisenman; Nicholas D. Lane; Emiliano Miluzzo; Ronald A. Peterson; Hong Lu; Xiao Zheng; Mirco Musolesi; Kristóf Fodor; Gahng-Seop Ahn

Technological advances in sensing, computation, storage, and communications will turn the near-ubiquitous mobile phone into a global mobile sensing device. People-centric sensing will help drive this trend by enabling a different way to sense, learn, visualize, and share information about ourselves, friends, communities, the way we live, and the world we live in. It juxtaposes the traditional view of mesh sensor networks with one in which people, carrying mobile devices, enable opportunistic sensing coverage. In the MetroSense Projects vision of people-centric sensing, users are the key architectural system component, enabling a host of new application areas such as personal, public, and social sensing.


international wireless internet conference | 2006

People-centric urban sensing

Andrew T. Campbell; Shane B. Eisenman; Nicholas D. Lane; Emiliano Miluzzo; Ronald A. Peterson

The vast majority of advances in sensor network research over the last five years have focused on the development of a series of small-scale (100s of nodes) testbeds and specialized applications (e.g., environmental monitoring, etc.) that are built on low-powered sensor devices that self-organize to form application-specific multihop wireless networks. We believe that sensor networks have reached an important crossroads in their development. The question we address in this paper is how to propel sensor networks from their small-scale application-specific network origins, into the commercial mainstream of peoples every day lives; the challenge being: how do we develop large-scale general-purpose sensor networks for the general public (e.g., consumers) capable of supporting a wide variety of applications in urban settings (e.g., enterprises, hospitals, recreational areas, towns, cities, and the metropolis). We propose MetroSense, a new people-centric paradigm for urban sensing at the edge of the Internet, at very large scale. We discuss a number of challenges, interactions and characteristics in urban sensing applications, and then present the MetroSense architecture which is based fundamentally on three design principles: network symbiosis, asymmetric design, and localized interaction. The ability of MetroSense to scale to very large areas is based on the use of an opportunistic sensor networking approach. Opportunistic sensor networking leverages mobility-enabled interactions and provides coordination between people-centric mobile sensors, static sensors and edge wireless access nodes in support of opportunistic sensing, opportunistic tasking, and opportunistic data collection. We discuss architectural challenges including providing sensing coverage with sparse mobile sensors, how to hand off roles and responsibilities between sensors, improving network performance and connectivity using adaptive multihop, and importantly, providing security and privacy for people-centric sensors and data.


international conference on embedded networked sensor systems | 2007

The BikeNet mobile sensing system for cyclist experience mapping

Shane B. Eisenman; Emiliano Miluzzo; Nicholas D. Lane; Ronald A. Peterson; Gahng-Seop Ahn; Andrew T. Campbell

We describe our experiences deploying BikeNet, an extensible mobile sensing system for cyclist experience mapping leveraging opportunistic sensor networking principles and techniques. BikeNet represents a multifaceted sensing system and explores personal, bicycle, and environmental sensing using dynamically role-assigned bike area networking based on customized Moteiv Tmote Invent motes and sensor-enabled Nokia N80 mobile phones. We investigate real-time and delay-tolerant uploading of data via a number of sensor access points (SAPs) to a networked repository. Among bicycles that rendezvous en route we explore inter-bicycle networking via data muling. The repository provides a cyclist with data archival, retrieval, and visualization services. BikeNet promotes the social networking of the cycling community through the provision of a web portal that facilitates back end sharing of real-time and archived cycling-related data from the repository. We present: a description and prototype implementation of the system architecture, an evaluation of sensing and inference that quantifies cyclist performance and the cyclist environment; a report on networking performance in an environment characterized by bicycle mobility and human unpredictability; and a description of BikeNet system user interfaces. Visit [4] to see how the BikeNet system visualizes a users rides.


ACM Transactions on Sensor Networks | 2009

BikeNet: A mobile sensing system for cyclist experience mapping

Shane B. Eisenman; Emiliano Miluzzo; Nicholas D. Lane; Ronald A. Peterson; Gahng-Seop Ahn; Andrew T. Campbell

We present BikeNet, a mobile sensing system for mapping the cyclist experience. Built leveraging the MetroSense architecture to provide insight into the real-world challenges of people-centric sensing, BikeNet uses a number of sensors embedded into a cyclists bicycle to gather quantitative data about the cyclists rides. BikeNet uses a dual-mode operation for data collection, using opportunistically encountered wireless access points in a delay-tolerant fashion by default, and leveraging the cellular data channel of the cyclists mobile phone for real-time communication as required. BikeNet also provides a Web-based portal for each cyclist to access various representations of her data, and to allow for the sharing of cycling-related data (for example, favorite cycling routes) within cycling interest groups, and data of more general interest (for example, pollution data) with the broader community. We present: a description and prototype implementation of the system architecture based on customized Moteiv Tmote Invent motes and sensor-enabled Nokia N80 mobile phones; an evaluation of sensing and inference that quantifies cyclist performance and the cyclist environment; a report on networking performance in an environment characterized by bicycle mobility and human unpredictability; and a description of BikeNet system user interfaces.


workshop on mobile computing systems and applications | 2008

Urban sensing systems: opportunistic or participatory?

Nicholas D. Lane; Shane B. Eisenman; Mirco Musolesi; Emiliano Miluzzo; Andrew T. Campbell

The development of sensing systems for urban deployments is still in its infancy. An interesting unresolved issue is the precise role assumed by people within such systems. This issue has significant implications as to where the complexity and the main challenges in building urban sensing systems will reside. This issue will also impact the scale and diversity of applications that are able to be supported. We contrast two end-points of the spectrum of conscious human involvement, namely participatory sensing, and opportunistic sensing. We develop an evaluation model and argue that opportunistic sensing more easily supports larger scale applications and broader diversity within such applications. In this paper, we provide preliminary analysis which supports this conjecture, and outline techniques we are developing in support of opportunistic sensing systems.


international conference on embedded networked sensor systems | 2005

Siphon: overload traffic management using multi-radio virtual sinks in sensor networks

Chieh-Yih Wan; Shane B. Eisenman; Andrew T. Campbell; Jon Crowcroft

There is a critical need for new thinking regarding overload traffic management in sensor networks. It has now become clear that experimental sensor networks (e.g., mote networks) and their applications commonly experience periods of persistent congestion and high packet loss, and in some cases even congestion collapse. This significantly impacts application fidelity measured at the physical sinks, even under light to moderate traffic loads, and is a direct product of the funneling effect; that is, the many-to-one multi-hop traffic pattern that characterizes sensor network communications. Existing congestion control schemes are effective at mitigating congestion through rate control and packet drop mechanisms, but do so at the cost of significantly reducing application fidelity measured at the sinks. To address this problem we propose to exploit the availability of a small number of all wireless, multi-radio virtual sinks that can be randomly distributed or selectively placed across the sensor field. Virtual sinks are capable of siphoning off data events from regions of the sensor field that are beginning to show signs of high traffic load. In this paper, we present the design, implementation, and evaluation of Siphon, a set of fully distributed algorithms that support virtual sink discovery and selection, congestion detection, and traffic redirection in sensor networks. Siphon is based on a Stargate implementation of virtual sinks that uses a separate longer-range radio network (based on IEEE 802.11) to siphon events to one or more physical sinks, and a short-range mote radio to interact with the sensor field at siphon points. Results from analysis, simulation and an experimental 48 Mica2 mote testbed show that virtual sinks can scale mote networks by effectively managing growing traffic demands while minimizing the impact on application fidelity.


ACM Transactions on Sensor Networks | 2007

Overload traffic management for sensor networks

Chieh-Yih Wan; Shane B. Eisenman; Andrew T. Campbell; Jon Crowcroft

There is a critical need for new thinking regarding overload traffic management in sensor networks. It has now become clear that experimental sensor networks (e.g., mote networks) and their applications commonly experience periods of persistent congestion and high packet loss, and in some cases even congestion collapse. This significantly impacts application fidelity measured at the physical sinks, even under light to moderate traffic loads, and is a direct product of the funneling effect; that is, the many-to-one multihop traffic pattern that characterizes sensor network communications. Existing congestion control schemes are effective at mitigating congestion through rate control and packet drop mechanisms, but do so at the cost of significantly reducing application fidelity measured at the sinks. To address this problem we propose to exploit the availability of a small number of all wireless, multiradio virtual sinks that can be randomly distributed or selectively placed across the sensor field. Virtual sinks are capable of siphoning off data events from regions of the sensor field that are beginning to show signs of high traffic load. In this paper, we present the design, implementation, and evaluation of Siphon, a set of fully distributed algorithms that support virtual sink discovery and selection, congestion detection, and traffic redirection in sensor networks. Siphon is based on a Stargate implementation of virtual sinks that uses a separate longer range radio network (based on IEEE 802.11) to siphon events to one or more physical sinks, and a short-range mote radio to interact with the sensor field at siphon points. Results from analysis, simulation and an experimental 48 Mica2 mote testbed show that virtual sinks can scale mote networks by effectively managing growing traffic demands while minimizing any negative impact on application fidelity. Additionally, we show the scheme is competitive with respect to energy consumption compared to a network composed of only motes.


ACM Transactions on Sensor Networks | 2011

Energy-efficient congestion detection and avoidance in sensor networks

Chieh-Yih Wan; Shane B. Eisenman; Andrew T. Campbell

Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the distribution and rate of packet sources in the network. It is during these periods of event impulses that the likelihood of congestion is greatest and the information in transit of most importance to users. To address this challenge we propose an energy-efficient congestion control scheme for sensor networks called CODA (COngestion Detection and Avoidance) that comprises three mechanisms: (i) receiver-based congestion detection; (ii) open-loop hop-by-hop backpressure; and (iii) closed-loop multisource regulation. We present the detailed design, implementation, and evaluation of CODA using simulation and experimentation. We define three important performance metrics (i.e., energy tax, fidelity penalty, and power) to evaluate the impact of CODA on the performance of sensing applications. We discuss the performance benefits and practical engineering challenges of implementing CODA in an experimental sensor network testbed based on Berkeley motes using CSMA. Simulation results indicate that CODA significantly improves the performance of data dissemination applications such as directed diffusion by mitigating hotspots, and reducing the energy tax and fidelity penalty on sensing applications. We also demonstrate that CODA is capable of responding to a number of congestion scenarios that we believe will be prevalent as the deployment of these networks accelerates.

Collaboration


Dive into the Shane B. Eisenman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirco Musolesi

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge