Shane D. Mayor
California State University, Chico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shane D. Mayor.
Journal of the Atmospheric Sciences | 1998
Peter P. Sullivan; Chin-Hoh Moeng; Bjorn Stevens; Donald H. Lenschow; Shane D. Mayor
The authors use large-eddy simulation (LES) to investigate entrainment and structure of the inversion layer of a clear convectively driven planetary boundary layer (PBL) over a range of bulk Richardson numbers, Ri. The LES code uses a nested grid technique to achieve fine resolution in all three directions in the inversion layer. Extensive flow visualization is used to examine the structure of the inversion layer and to illustrate the temporal and spatial interaction of a thermal plume and the overlying inversion. It is found that coherent structures in the convective PBL, that is, thermal plumes, are primary instigators of entrainment in the Ri range 13.6 # Ri # 43.8. At Ri 5 13.6, strong horizontal and downward velocities are generated near the inversion layer because of the plume‐interface interaction. This leads to folding of the interface and hence entrainment of warm inversion air at the plume’s edge. At Ri 5 34.5, the inversion’s strong stability prevents folding of the interface but strong horizontal and downward motions near the plume’s edge pull down pockets of warm air below the nominal inversion height. These pockets of warm air are then scoured off by turbulent motions and entrained into the PBL. The structure of the inversion interface from LES is in good visual agreement with lidar measurements in the PBL obtained during the Lidars in Flat Terrain field experiment. A quadrant analysis of the buoyancy flux shows that net entrainment flux (or average minimum buoyancy flux wu min) is identified with quadrant IV w2u1 , 0 motions, that is, warm air moving downward. Plumes generate both large negative quadrant II w1u2 , 0 and positive quadrant III w2u2 . 0 buoyancy fluxes that tend to cancel. The maximum vertical gradient in potential temperature at every (x, y) grid point is used to define a local PBL height, zi(x, y). A statistical analysis of zi shows that skewness of zi depends on the inversion strength. Spectra of zi exhibit a sensitivity to grid resolution. The normalized entrainment rate we/w * , where we and w * are entrainment and convective velocities, varies as ARi21 with A 0.2 in the range 13.6 # Ri # 43.8 and is in good agreement with convection tank measurements. For a clear convective PBL, the authors found that the finite thickness of the inversion layer needs to be considered in an entrainment rate parameterization derived from a jump condition.
Journal of Geophysical Research | 1998
Robert M. Banta; Christoph J. Senff; Allen B. White; M. Trainer; Richard T. McNider; Ralph J. Valente; Shane D. Mayor; Raul J. Alvarez; R. Michael Hardesty; D. D. Parrish; Fred C. Fehsenfeld
A 3-day period of strong, synoptic-scale stagnation, in which daytime boundary-layer winds were light and variable over the region, occurred in mid July of the 1995 Southern Oxidants Study centered on Nashville, Tennessee. Profiler winds showed light and variable flow throughout the mixed layer during the daytime, but at night in the layer between 100 and 2000 m AGL (which had been occupied by the daytime mixed layer) the winds accelerated to 5-10 m s-1 as a result of nocturnal decoupling from surface friction, which producect inertial oscillations. In the present study, we investigate the effects of these wind changes on the buildup and transport of ozone (03). The primary measurement system used in this study was an airborne differential absorption lidar (DIAL) system that profiled 03 in the boundary layer as the airplane flew along. Vertical cross sections showed that 03 concentrations exceeding 120 ppb extended up to nearly 2 km AGL, but that the 03 hardly moved at all horizontally, instead forming a dome of pollution over or near the city. The analysis concentrates on four meteorological processes that determine the 3-D spatial distribution of 03 and the interaction between urban and rural pollution: (1) daytime buildup of 03 over the urban area, (2) the extent of the drift of pollution cloud during the day as it formed, which controls peak 03 concentrations, (3) nighttime transport by the accelerated winds above the surface, and (4) vertical mixing of pollution layers the next day. Other consequences of very light-wind conditions were intra-regional differences in daytime mixed-layer depth over distances of 50 km or less, and indications of an urban heat-island circulation.
Applied Optics | 2004
Shane D. Mayor; Scott M. Spuler
The design features of, and first observations from, a new elastic backscatter lidar system at a wavelength of 1543 nm are presented. The transmitter utilizes stimulated Raman scattering in high-pressure methane to convert fundamental Nd:YAG radiation by means of the 1st Stokes shift. The wavelength-converting gas cell features multipass operation and internal fans. Unlike previous lidar developments that used Raman scattering in methane, the pump beam is not focused in the present configuration. This feature prevents optical breakdown of the gas inside the cell. Additionally, the gas cell is injection seeded by a diode to improve conversion efficiency and beam quality. The receiver uses a 40.6-cm-diameter telescope and a 200-microm InGaAs avalanche photodiode. The system is capable of operating in a dual-wavelength mode (1064 and 1543 nm simultaneously) for comparison or in a completely eye-safe mode. The system is capable of transmitting an energy of more than 200 mJ/pulse at 10 Hz. Aerosol backscatter data from vertical and horizontal pointing periods are shown.
Optical Engineering | 2007
Shane D. Mayor; Scott M. Spuler; Bruce Morley; Eric Loew
The ability to detect relative changes in backscatter polariza- tion from a scanning high-pulse-energy lidar system at 1.54-m wave- length is demonstrated. The new capability was tested during the dis- semination of various biological aerosol simulants and other particulate emissions at the U.S. Armys Dugway Proving Ground. Results demon- strate that the lidar is sensitive to different types of aerosols, and depar- tures from the atmospheric background depolarization ratio are consis- tent with the limited amount of information available on the degree of particle sphericity. We conclude that the polarization-sensitive coatings of the beam-steering unit mirrors are presently the largest source of error and that this error is minimized when scanning with a near-zero elevation angle. This is an encouraging result for aerosol source surveillance ap- plications, where the depolarization information may be useful in deter- mining the aerosol generation mechanism or provide an additional scalar variable for use in delineating the plume from the background.
Applied Optics | 1994
Noah S. Higdon; Edward V. Browell; Ponsardin P; Grossmann Be; Carolyn F. Butler; Chyba Th; Mayo Mn; Allen Rj; Heuser Aw; William B. Grant; Syed Ismail; Shane D. Mayor; Carter Af
An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.
Bulletin of the American Meteorological Society | 2011
Edward G. Patton; Thomas W. Horst; Peter P. Sullivan; Donald H. Lenschow; Stephen P. Oncley; William O. J. Brown; Sean P. Burns; Alex Guenther; Andreas Held; Thomas Karl; Shane D. Mayor; Luciana V. Rizzo; Scott M. Spuler; Jielun Sun; Andrew Turnipseed; Eugene Allwine; Steven L. Edburg; Brian K. Lamb; Roni Avissar; Ronald Calhoun; Jan Kleissl; William J. Massman; Kyaw Tha Paw U; Jeffrey Weil
The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile ...
Boundary-Layer Meteorology | 2012
Donald H. Lenschow; Marie Lothon; Shane D. Mayor; Peter P. Sullivan; Guylaine Canut
We have analyzed measurements of vertical velocity w statistics with the NOAA high resolution Doppler lidar (HRDL) from about 390 m above the surface to the top of the convective boundary layer (CBL) over a relatively flat and uniform agricultural surface during the Lidars-in-Flat-Terrain (LIFT) experiment in 1996. The temporal resolution of the zenith-pointing lidar was about 1 s, and the range-gate resolution about 30 m. Vertical cross-sections of w were used to calculate second- to fourth-moment statistics of w as a function of height throughout most of the CBL. We compare the results with large-eddy simulations (LES) of the CBL and with in situ aircraft measurements. A major cause of the observed case-to-case variability in the vertical profiles of the higher moments is differences in stability. For example, for the most convective cases, the skewness from both LES and observations changes more with height than for cases with more shear, with the observations changing more with stability than the LES. We also found a decrease in skewness, particularly in the upper part of the CBL, with an increase in LES grid resolution.
Journal of the Atmospheric Sciences | 2009
James D. Doyle; Vanda Grubišić; William O. J. Brown; Stephan F. J. De Wekker; Andreas Dörnbrack; Qingfang Jiang; Shane D. Mayor; Martin Weissmann
High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of 500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors.
Journal of Applied Meteorology | 2001
Shane D. Mayor; Edwin W. Eloranta
Abstract Spatially resolved wind fields are derived by cross correlation of aerosol backscatter data from horizontal and vertical scans of the University of Wisconsin volume imaging lidar during the 1997/98 Lake-Induced Convection Experiment. Data from three cases are analyzed. The first two cases occurred on 10 and 13 January 1998 during cold-air outbreaks. Horizontal scans at 5 m above the lake reveal cellular structure of the steam fog. Vector winds are derived with 250-m spatial resolution over 60 and 36 km2 areas. These wind fields show acceleration and veering of offshore flow in the convective internal boundary layer along the upwind edge of Lake Michigan. The wind fields are used to compute divergence and vorticity. Effects of shoreline shape and topography are evident in the data. Horizontal wind speeds derived from vertical scans show the effects of convection on the vertical distribution of momentum. In the third case, 21 December 1997, a well-defined, shallow density current flowing offshore a...
Bulletin of the American Meteorological Society | 1998
Stephen A. Cohn; Shane D. Mayor; Christian J. Grund; Tammy M. Weckwerth; Christoph J. Senff
The authors describe and present early results from the July–August 1996 Lidars in Flat Terrain (LIFT) experiment. LIFT was a boundary layer experiment that made use of recently developed Doppler, aerosol backscatter, and ozone lidars, along with radars and surface instrumentation, to study the structure and evolution of the convective boundary layer over the very flat terrain of central Illinois. Scientific goals include measurement of fluxes of heat, moisture, and momentum; vertical velocity statistics; study of entrainment and boundary layer height; and observation of organized coherent structures. The data collected will also be used to evaluate the performance of these new lidars and compare measurements of velocity and boundary layer height to those obtained from nearby radar wind profilers. LIFT was a companion to the Flatland96 experiment, described by Angevine et al.