Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane Legg is active.

Publication


Featured researches published by Shane Legg.


Nature | 2015

Human-level control through deep reinforcement learning

Volodymyr Mnih; Koray Kavukcuoglu; David Silver; Andrei A. Rusu; Joel Veness; Marc G. Bellemare; Alex Graves; Martin A. Riedmiller; Andreas K. Fidjeland; Georg Ostrovski; Stig Petersen; Charles Beattie; Amir Sadik; Ioannis Antonoglou; Helen King; Dharshan Kumaran; Daan Wierstra; Shane Legg; Demis Hassabis

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.


Minds and Machines | 2007

Universal Intelligence: A Definition of Machine Intelligence

Shane Legg; Marcus Hutter

A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: we take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.


IEEE Transactions on Evolutionary Computation | 2006

Fitness uniform optimization

Marcus Hutter; Shane Legg

In evolutionary algorithms, the fitness of a population increases with time by mutating and recombining individuals and by a biased selection of fitter individuals. The right selection pressure is critical in ensuring sufficient optimization progress on the one hand and in preserving genetic diversity to be able to escape from local optima on the other hand. Motivated by a universal similarity relation on the individuals, we propose a new selection scheme, which is uniform in the fitness values. It generates selection pressure toward sparsely populated fitness regions, not necessarily toward higher fitness, as is the case for all other selection schemes. We show analytically on a simple example that the new selection scheme can be much more effective than standard selection schemes. We also propose a new deletion scheme which achieves a similar result via deletion and show how such a scheme preserves genetic diversity more effectively than standard approaches. We compare the performance of the new schemes to tournament selection and random deletion on an artificial deceptive problem and a range of NP hard problems: traveling salesman, set covering, and satisfiability


arXiv: Artificial Intelligence | 2013

An Approximation of the Universal Intelligence Measure

Shane Legg; Joel Veness

The Universal Intelligence Measure is a recently proposed formal definition of intelligence. It is mathematically specified, extremely general, and captures the essence of many informal definitions of intelligence. It is based on Hutter’s Universal Artificial Intelligence theory, an extension of Ray Solomonoff’s pioneering work on universal induction. Since the Universal Intelligence Measure is only asymptotically computable, building a practical intelligence test from it is not straightforward. This paper studies the practical issues involved in developing a real-world UIM-based performance metric. Based on our investigation, we develop a prototype implementation which we use to evaluate a number of different artificial agents.


congress on evolutionary computation | 2004

Tournament versus fitness uniform selection

Shane Legg; Marcus Hutter; Akshat Kumar

In evolutionary algorithms a critical parameter that must be tuned is that of selection pressure. If it is set too low then the rate of convergence towards the optimum is likely to be slow. Alternatively if the selection pressure is set too high the system is likely to become stuck in a local optimum due to a loss of diversity in the population. The recent fitness uniform selection scheme (FUSS) is a conceptually simple but somewhat radical approach to addressing this problem - rather than biasing the selection towards higher fitness, FUSS biases selection towards sparsely populated fitness levels. In this paper, we compare the relative performance of FUSS with the well known tournament selection scheme on a range of problems.


arXiv: Artificial Intelligence | 2007

Tests of machine intelligence

Shane Legg; Marcus Hutter

Although the definition and measurement of intelligence is clearly of fundamental importance to the field of artificial intelligence, no general survey of definitions and tests of machine intelligence exists. Indeed few researchers are even aware of alternatives to the Turing test and its many derivatives. In this paper we fill this gap by providing a short survey of the many tests of machine intelligence that have been proposed.


algorithmic learning theory | 2006

Is there an elegant universal theory of prediction

Shane Legg

Solomonoffs inductive learning model is a powerful, universal and highly elegant theory of sequence prediction. Its critical flaw is that it is incomputable and thus cannot be used in practice. It is sometimes suggested that it may still be useful to help guide the development of very general and powerful theories of prediction which are computable. In this paper it is shown that although powerful algorithms exist, they are necessarily highly complex. This alone makes their theoretical analysis problematic, however it is further shown that beyond a moderate level of complexity the analysis runs into the deeper problem of Godel incompleteness. This limits the power of mathematics to analyse and study prediction algorithms, and indeed intelligent systems in general.


Scientific Reports | 2018

Symmetric Decomposition of Asymmetric Games

Karl Tuyls; Julien Pérolat; Marc Lanctot; Georg Ostrovski; Rahul Savani; Joel Z Leibo; Toby Ord; Thore Graepel; Shane Legg

We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.


international joint conference on artificial intelligence | 2017

Reinforcement Learning with a Corrupted Reward Channel

Tom Everitt; Victoria Krakovna; Laurent Orseau; Shane Legg

No real-world reward function is perfect. Sensory errors and software bugs may result in RL agents observing higher (or lower) rewards than they should. For example, a reinforcement learning agent may prefer states where a sensory error gives it the maximum reward, but where the true reward is actually small. We formalise this problem as a generalised Markov Decision Problem called Corrupt Reward MDP. Traditional RL methods fare poorly in CRMDPs, even under strong simplifying assumptions and when trying to compensate for the possibly corrupt rewards. Two ways around the problem are investigated. First, by giving the agent richer data, such as in inverse reinforcement learning and semi-supervised reinforcement learning, reward corruption stemming from systematic sensory errors may sometimes be completely managed. Second, by using randomisation to blunt the agents optimisation, reward corruption can be partially managed under some assumptions.


arXiv: Learning | 2015

Massively Parallel Methods for Deep Reinforcement Learning

Arun Nair; Praveen Srinivasan; Sam Blackwell; Cagdas Alcicek; Rory Fearon; Alessandro De Maria; Vedavyas Panneershelvam; Mustafa Suleyman; Charles Beattie; Stig Petersen; Shane Legg; Volodymyr Mnih; Koray Kavukcuoglu; David Silver

Collaboration


Dive into the Shane Legg's collaboration.

Top Co-Authors

Avatar

Marcus Hutter

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Joel Z. Leibo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daan Wierstra

Dalle Molle Institute for Artificial Intelligence Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge