Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane McCarthy is active.

Publication


Featured researches published by Shane McCarthy.


Science | 2008

Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia

Tom Walsh; Jon McClellan; Shane McCarthy; Anjene Addington; Sarah B. Pierce; Greg M. Cooper; Alex S. Nord; Mary Kusenda; Dheeraj Malhotra; Abhishek Bhandari; Sunday M. Stray; Caitlin Rippey; Patricia Roccanova; Vlad Makarov; B. Lakshmi; Robert L. Findling; Linmarie Sikich; Thomas Stromberg; Barry Merriman; Nitin Gogtay; Philip Butler; Kristen Eckstrand; Laila Noory; Peter Gochman; Robert Long; Zugen Chen; Sean Davis; Carl Baker; Evan E. Eichler; Paul S. Meltzer

Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications >100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.


Nature | 2011

Modelling schizophrenia using human induced pluripotent stem cells

Kristen J. Brennand; Anthony Simone; Jessica Jou; Chelsea Gelboin-Burkhart; Ngoc Tran; Sarah Sangar; Yan Li; Yangling Mu; Gong Chen; Diana Yu; Shane McCarthy; Jonathan Sebat; Fred H. Gage

Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%. Although post-mortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (Supplementary Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cyclic AMP and WNT signalling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder.


Nature Genetics | 2009

Microduplications of 16p11.2 are associated with schizophrenia.

Shane McCarthy; Vladimir Makarov; George Kirov; Anjene Addington; Jon McClellan; Seungtai Yoon; Diana O. Perkins; Diane E. Dickel; Mary Kusenda; Olga Krastoshevsky; Verena Krause; Ravinesh A. Kumar; Detelina Grozeva; Dheeraj Malhotra; Tom Walsh; Elaine H. Zackai; Jaya Ganesh; Ian D. Krantz; Nancy B. Spinner; Patricia Roccanova; Abhishek Bhandari; Kevin Pavon; B. Lakshmi; Anthony Leotta; Jude Kendall; Yoon-ha Lee; Vladimir Vacic; Sydney Gary; Lilia M. Iakoucheva; Timothy J. Crow

Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders. We report the association of 16p11.2 microduplications with schizophrenia in two large cohorts. The microduplication was detected in 12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls (P = 1.2 × 10−5, OR = 25.8) from the initial cohort, and in 9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls (P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 microduplication was associated with a 14.5-fold increased risk of schizophrenia (95% CI (3.3, 62)) in the combined sample. A meta-analysis of datasets for multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia (P = 4.8 × 10−7), bipolar disorder (P = 0.017) and autism (P = 1.9 × 10−7). In contrast, the reciprocal microdeletion was associated only with autism and developmental disorders (P = 2.3 × 10−13). Head circumference was larger in patients with the microdeletion than in patients with the microduplication (P = 0.0007).


Nature Genetics | 2010

A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay

Santhosh Girirajan; Jill A. Rosenfeld; Gregory M. Cooper; Francesca Antonacci; Priscillia Siswara; Andy Itsara; Laura Vives; Tom Walsh; Shane McCarthy; Carl Baker; Mefford Hc; Jeffrey M. Kidd; Sharon R. Browning; Brian L. Browning; Diane E. Dickel; Deborah L. Levy; Blake C. Ballif; Kathryn Platky; Darren M. Farber; Gordon C. Gowans; Jessica J. Wetherbee; Alexander Asamoah; David D. Weaver; Paul R. Mark; Jennifer N. Dickerson; Bhuwan P. Garg; Sara Ellingwood; Rosemarie Smith; Valerie Banks; Wendy Smith

We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls (P = 0.0009, OR = 7.2) and replicated in a second series of 22 of 9,254 cases compared with 6 of 6,299 controls (P = 0.028, OR = 2.5). Most deletions were inherited, with carrier parents likely to manifest neuropsychiatric phenotypes compared to non-carrier parents (P = 0.037, OR = 6). Probands were more likely to carry an additional large copy-number variant when compared to matched controls (10 of 42 cases, P = 5.7 × 10−5, OR = 6.6). The clinical features of individuals with two mutations were distinct from and/or more severe than those of individuals carrying only the co-occurring mutation. Our data support a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity indicates that this two-hit model might be more generally applicable to neuropsychiatric disease.


Nature | 2011

Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia

Vladimir Vacic; Shane McCarthy; Dheeraj Malhotra; Fiona Murray; Hsun Hua Chou; Aine Peoples; Vladimir Makarov; Seungtai Yoon; Abhishek Bhandari; Roser Corominas; Lilia M. Iakoucheva; Olga Krastoshevsky; Verena Krause; Verãnica Larach-Walters; David K. Welsh; David Craig; John R. Kelsoe; Elliot S. Gershon; Suzanne M. Leal; Marie Dell Aquila; Derek W. Morris; Michael Gill; Aiden Corvin; Paul A. Insel; Jon McClellan; Mary Claire King; Maria Karayiorgou; Deborah L. Levy; Lynn E. DeLisi; Jonathan Sebat

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2–4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


Trends in Genetics | 2009

Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders

Jonathan Sebat; Deborah L. Levy; Shane McCarthy

Recent studies have established an important role for rare genomic deletions and duplications in the etiology of schizophrenia. This research suggests that the genetic architecture of neuropsychiatric disorders includes a constellation of rare mutations in many different genes. Mutations that confer substantial risk for schizophrenia have been identified at several loci, most of which have also been implicated in other neurodevelopmental disorders, including autism. Genetic heterogeneity is a characteristic of schizophrenia; conversely, phenotypic heterogeneity is a characteristic of all schizophrenia-associated mutations. Both kinds of heterogeneity probably reflect the complexity of neurodevelopment. Research strategies must account for both genetic and clinical heterogeneity to identify the genes and pathways crucial for the development of neuropsychiatric disorders.


Molecular Psychiatry | 2014

De novo Mutations in Schizophrenia Implicate Chromatin Remodeling and Support a Genetic Overlap with Autism and Intellectual Disability

Shane McCarthy; Jesse Gillis; Melissa Kramer; J Lihm; Seungtai Yoon; Y Berstein; Meeta Mistry; Paul Pavlidis; R Solomon; Elena Ghiban; E Antoniou; Eric Kelleher; C. O'Brien; Gary Donohoe; Michael Gill; Derek W. Morris; W. R. McCombie; Aiden Corvin

Schizophrenia is a serious psychiatric disorder with a broadly undiscovered genetic etiology. Recent studies of de novo mutations (DNMs) in schizophrenia and autism have reinforced the hypothesis that rare genetic variation contributes to risk. We carried out exome sequencing on 57 trios with sporadic or familial schizophrenia. In sporadic trios, we observed a ~3.5-fold increase in the proportion of nonsense DNMs (0.101 vs 0.031, empirical P=0.01, Benjamini–Hochberg-corrected P=0.044). These mutations were significantly more likely to occur in genes with highly ranked probabilities of haploinsufficiency (P=0.0029, corrected P=0.006). DNMs of potential functional consequence were also found to occur in genes predicted to be less tolerant to rare variation (P=2.01 × 10−5, corrected P=2.1 × 10−3). Genes with DNMs overlapped with genes implicated in autism (for example, AUTS2, CHD8 and MECP2) and intellectual disability (for example, HUWE1 and TRAPPC9), supporting a shared genetic etiology between these disorders. Functionally CHD8, MECP2 and HUWE1 converge on epigenetic regulation of transcription suggesting that this may be an important risk mechanism. Our results were consistent in an analysis of additional exome-based sequencing studies of other neurodevelopmental disorders. These findings suggest that perturbations in genes, which function in the epigenetic regulation of brain development and cognition, could have a central role in the susceptibility to, pathogenesis and treatment of mental disorders.


European Journal of Human Genetics | 2011

Reduced transcript expression of genes affected by inherited and de novo CNVs in autism.

Alex S. Nord; Wendy Roeb; Diane E. Dickel; Tom Walsh; Mary Kusenda; Kristen Lewis O'Connor; Dheeraj Malhotra; Shane McCarthy; Sunday M. Stray; Susan M. Taylor; Jonathan Sebat; Bryan H. King; Mary Claire King; Jon McClellan

Individuals with autism are more likely to carry rare inherited and de novo copy number variants (CNVs). However, further research is needed to establish which CNVs are causal and the mechanisms by which these CNVs influence autism. We examined genomic DNA of children with autism (N=41) and healthy controls (N=367) for rare CNVs using a high-resolution array comparative genomic hybridization platform. We show that individuals with autism are more likely to harbor rare CNVs as small as ∼10 kb, a threshold not previously detectable, and that CNVs in cases disproportionately affect genes involved in transcription, nervous system development, and receptor activity. We also show that a subset of genes that have known or suspected allele-specific or imprinting effects and are within rare-case CNVs may undergo loss of transcript expression. In particular, expression of CNTNAP2 and ZNF214 are decreased in probands compared with their unaffected transmitting parents. Furthermore, expression of PRODH and ARID1B, two genes affected by de novo CNVs, are decreased in probands compared with controls. These results suggest that for some genes affected by CNVs in autism, reduced transcript expression may be a mechanism of pathogenesis during neurodevelopment.


American Journal of Human Genetics | 2010

Genomic Duplication and Overexpression of TJP2/ZO-2 Leads to Altered Expression of Apoptosis Genes in Progressive Nonsyndromic Hearing Loss DFNA51

Tom Walsh; Sarah B. Pierce; Danielle R. Lenz; Zippora Brownstein; Orit Dagan-Rosenfeld; Hashem Shahin; Wendy Roeb; Shane McCarthy; Alex S. Nord; Carlos R. Gordon; Ziva Ben-Neriah; Jonathan Sebat; Moien Kanaan; Ming K. Lee; Moshe Frydman; Mary Claire King; Karen B. Avraham

Age-related hearing loss is due to death over time, primarily by apoptosis, of hair cells in the inner ear. Studies of mutant genes responsible for inherited progressive hearing loss have suggested possible mechanisms for hair cell death, but critical connections between these mutations and the causes of progressive hearing loss have been elusive. In an Israeli kindred, dominant, adult-onset, progressive nonsyndromic hearing loss DFNA51 is due to a tandem inverted genomic duplication of 270 kb that includes the entire wild-type gene encoding the tight junction protein TJP2 (ZO-2). In the mammalian inner ear, TJP2 is expressed mainly in tight junctions, and also in the cytoplasm and nuclei. TJP2 expression normally decreases with age from embryonic development to adulthood. In cells of affected family members, TJP2 transcript and protein are overexpressed, leading to decreased phosphorylation of GSK-3beta and to altered expression of genes that regulate apoptosis. These results suggest that TJP2- and GSK-3beta-mediated increased susceptibility to apoptosis of cells of the inner ear is the mechanism for adult-onset hearing loss in this kindred and may serve as one model for age-related hearing loss in the general population.


Molecular Psychiatry | 2014

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan

David J. Porteous; Pippa A. Thomson; J. K. Millar; Kathryn L. Evans; William Hennah; Dinesh C. Soares; Shane McCarthy; W R McCombie; S. J. Clapcote; Carsten Korth; Nicholas J. Brandon; Akira Sawa; Atsushi Kamiya; J. C. Roder; Stephen M. Lawrie; Andrew M. McIntosh; D. St Clair; D. H. Blackwood

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan

Collaboration


Dive into the Shane McCarthy's collaboration.

Top Co-Authors

Avatar

Jonathan Sebat

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Walsh

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon McClellan

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge