Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shang-Da Huang is active.

Publication


Featured researches published by Shang-Da Huang.


Journal of Chromatography A | 2008

Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection

Mei-I Leong; Shang-Da Huang

A simple dispersive liquid-liquid microextraction (DLLME) method based on solidification of a floating organic drop (DLLME-SFO) technique combined with gas chromatography/electron-capture detection (GC/ECD) or gas chromatography/mass spectrometry (GC/MS) has been developed. The proposed method is simple, low in cost, and of high precision. It overcomes the most important problem in DLLME, the high-toxic solvent used. Halogenated organic compounds (HOCs) in water samples were determined as the model compounds. The parameters optimized for the DLLME-SFO technique were as follows: A mixture of 0.5 mL acetone, containing 10 microL 2-dodecanol (2-DD-OH), was rapidly injected by syringe into the 5 mL water sample. After centrifugation, the fine 2-DD-OH droplets (8+/-0.5 microL) were floated at the top of the screwcap test tube. The test tube was then cooled in an ice bath. After 5 min the 2-DD-OH solvent had solidified and was then transferred into a conical vial; it melted quickly at room temperature and 3 microL (for GC/ECD) or 2 microL (for GC/MS) of it was injected into a gas chromatograph for analysis. The limit of detection (LOD) for this technique was 0.005-0.05microgL(-1) for GC/ECD and was 0.005-0.047 microgL(-1) for GC/MS, respectively. The linear range of the calibration curve of DLLME-SFO was from 0.01 to 500 microgL(-1) with a coefficient of estimation (r2)>0.996 for GC/ECD and was from 0.02 to 500 microgL(-1) with a coefficient of estimation (r2)>0.996 for GC/MS.


Talanta | 2000

Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector.

Mei-Shu Chan; Shang-Da Huang

Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the chemical modifier to determine cadmium. The matrix interference was removed completely so that a simple calibration curve method could be applied. This work is the first one with the capability of determining cadmium in unpolluted seawater directly with GFAAS using calibration curve based on simple aqueous standards. The accuracy of the methods was confirmed by analysis of three kinds of certified reference saline waters. The detection limits (LODs), with injection of a 20-mul aliquot of seawater sample, were 0.06 mug l(-1) for copper and 0.005 mug l(-1) for cadmium.


Journal of Chromatography A | 2009

Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples

Mei-I Leong; Shang-Da Huang

A new simple and rapid dispersive liquid-liquid microextraction method has been developed for the extraction and analysis of organochlorine pesticides (OCPs) in water samples. The method is based on the solidification of a floating organic drop (DLLME-SFO) and is combined with gas chromatography/electron capture detection (GC/ECD). Very little solvent is required in this method. The disperser solvent (200microL acetonitrile) containing 10microL hexadecane (HEX) is rapidly injected by a syringe into the 5.0mL water sample. After centrifugation, the fine HEX droplets (6+/-0.5microL) float at the top of the screw-cap test tube. The test tube is then cooled in an ice bath. After 5min, the HEX solvent solidifies and is then transferred into a conical vial, where it melts quickly at room temperature, and 1microL of it is injected into a gas chromatograph for analysis. Under optimum conditions, the enrichment factors and extraction recoveries are high and range between 37-872 and 82.9-102.5%, respectively. The linear range is wide (0.025-20microgL(-1)), and the limits of detection are between 0.011 and 0.11microgL(-1) for most of the analytes. The relative standard deviation (RSD) for 1microgL(-1) of OCPs in water was in the range of 5.8-8.8%. The performance of the method was gauged by analyzing samples of lake and tap water.


Analytica Chimica Acta | 2010

Determination of the steroid hormone levels in water samples by dispersive liquid―liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography

Chu-Chi Chang; Shang-Da Huang

In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 microg L(-1). The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 microg L(-1) for E1, 3 microg L(-1) for E2, 4 microg L(-1) for EE2 and 9 microg L(-1) for E3) and 89% to 102% for tap water (which was spiked with 6 microg L(-1) for E1, 5 microg L(-1) for E2, 6 microg L(-1) for EE2 and 10 microg L(-1) for E3). The detection limits of the method ranged from 0.8 to 2.7 microg L(-1) for spiked river water and 1.4 to 3.1 microg L(-1) for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.


Journal of Chromatography A | 2014

Beyond dispersive liquid–liquid microextraction

Mei-I Leong; Ming-Ren Fuh; Shang-Da Huang

Dispersive liquid-liquid microextraction (DLLME) and other dispersion liquid-phase microextraction (LPME) methods have been developed since the first DLLME method was reported in 2006. DLLME is simple, rapid, and affords high enrichment factor, this is due to the large contact surface area of the extraction solvent. DLLME is a method suitable for the extraction in many different water samples, but it requires using chlorinated solvents. In recent years, interest in DLLME or dispersion LPME has been focused on the use of low-toxicity solvents and more conveniently practical procedures. This review examines some of the most interesting developments in the past few years. In the first section, DLLME methods are separated in two categories: DLLME with low-density extraction solvent and DLLME with high-density extraction solvent. Besides these methods, many novel special devices for collecting low-density extraction solvent are also mentioned. In addition, various dispersion techniques with LPME, including manual shaking, air-assisted LPME (aspirating and injecting the extraction mixture by syringe), ultrasound-assisted emulsification, vortex-assisted emulsification, surfactant-assisted emulsification, and microwave-assisted emulsification are described. Besides the above methods, combinations of DLLME with other extraction techniques (solid-phase extraction, stir bar sorptive extraction, molecularly imprinted matrix solid-phase dispersion and supercritical fluid extraction) are introduced. The combination of nanotechnique with DLLME is also introduced. Furthermore, this review illustrates the application of DLLME or dispersion LPME methods to separate and preconcentrate various organic analytes, inorganic analytes, and samples.


Talanta | 2008

Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometric detection

Jing-Shan Chiang; Shang-Da Huang

The one-step derivatization and extraction technique for the determination of anilines in river water by dispersive liquid-liquid microextraction (DLLME) is presented. In this method the anilines are extracted by DLLME and derivatized with pentafluorobenzaldehyde (PFBAY) in aqueous solution simultaneously. In this derivatization/extraction method, 0.5 ml acetone (disperser solvent) containing 10 microl chlorobenzene (extraction solvent) and 30 g/l pentafluorobenzaldehyde (PFBAY) dissolved in methanol was rapidly injected by syringe into 5 ml aqueous sample (pH 4.6). Within 20 min the analytes extracted and derivatized were almost finished. After centrifugation, 2 microl sedimented phase containing enriched analytes was determined by GC-MS. The effects of extraction and disperser solvent type and their volume, pH value of sample solution, derivatization and extraction time, derivatization and extraction temperature were investigated. Linearity in this developed method was ranging from 0.25 to 70 microg/l, and the correlation coefficients (R2) were between 0.9955 and 0.9989, and reasonable reproducibility ranging from 5.8 to 11.8% (n=5). Method detection limits (MDLs) ranged from 0.04 to 0.09 microg/l (n=5).


Talanta | 2006

Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography-mass spectrometry

Pai-Shan Chen; Shang-Da Huang

A technique for the analysis of organophosphorus pesticides (ethoprop, diazinon, disulfoton, fenthion) in aqueous sample using liquid-phase microextraction (LPME), coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A small section of a hollow fiber inserted into the needle of GC syringe and filled with the 3.5mul of organic solvent was used to extract pesticides from a 20ml aqueous sample. The limits of detection (LOD) with the selected ion monitoring (SIM) mode varied from 0.2 to 0.006mug/l. The calibration curves were linear over three orders of magnitude with R(2)>/=0.996. The relative standard deviations of the analysis (inter- and intra-day) were 5-8%, and the relative recoveries from the lake water sample were greater than 83%. The results were compared with results obtained using solid-phase microextraction (SPME/GC/MS).


Journal of Chromatography A | 2009

Dispersive liquid–liquid microextraction with little solvent consumption combined with gas chromatography–mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples

Wan-Chun Tsai; Shang-Da Huang

Dispersive liquid-liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid-liquid microextraction (DLLME) technique with few solvent requirements (13 microL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885-2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1-9.7% for reservoir water; 5.6-8.9% for river water) and high sensitivity (limits of detection: 0.8-2.5 ng/L for reservoir water; 0.4-1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.


Analytica Chimica Acta | 2008

Application of liquid–liquid–liquid microextraction and high-performance liquid-chromatography for the determination of sulfonamides in water

Che-Yi Lin; Shang-Da Huang

This work presents a novel liquid-liquid-liquid microextraction (LLLME) technique for the extraction of sulfonamides from aqueous systems; it combines with high-performance liquid-chromatography-ultraviolet absorbance detection (HPLC/UV). In this experiment the sulfonamides were successively extracted from a donor phase (i.e., a water sample) into several microliters of an organic phase and then from the organic phase into an acceptor phase (i.e., an aqueous extract) by LLLME. The following separation and quantitative analyses were performed using HPLC/UV with 265 nm detection. Extraction condition such as solvent identity, agitation, extraction time, acceptor phase NaOH concentration, donor phase pH, and salt addition were optimized. Relative standard deviation (RSD, 2.6-5.3%), coefficient of estimation (R2, 0.9972-0.9999), and method detection limit (MDL, 0.11-0.77 ng mL(-1)) were achieved under the selected conditions. The proposed method was successfully applied to the analyses of three practical water samples and the relative recoveries of sulfonamides from the spiked water samples were in the range of 86.2-108.7%. The proposed method also confirms microextraction to be robust to monitoring trace levels of sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, sulfadimidine, sulfamonomethoxine, sulfamethoxazole, and sulfaquinoxaline in aqueous samples.


Talanta | 2005

Analysis of earthy and musty odors in water samples by solid-phase microextraction coupled with gas chromatography/ion trap mass spectrometry

Yu-Hsiang Sung; Tzu-Ying Li; Shang-Da Huang

A method for the determination of the earthy and musty odors geosmin, 2-methylisoborneol (2-MIB), 2-isobutyl-3-methoxy pyrazine (IBMP), 2-isopropyl-3-methoxy pyrazine (IPMP) and 2,4,6-trichloroanisole (2,4,6-TCA) in water by headspace solid-phase microextraction (HSSPME) combined with gas chromatography-ion trap mass spectrometry (GC-ITMS) is described. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, extraction temperature, extraction time, desorption temperature, desorption time, ionic strength and elutropic strength and pH of samples). The method shows good linearity over the concentration range 1-500ngl(-1) and gives detection limits of sub-part per trillion levels for all compounds. Good precision (5.9-9.8%) is obtained using IBMP as internal standard. Finally, the method was successfully applied to analyze earthy and musty odors in tap water and lake water.

Collaboration


Dive into the Shang-Da Huang's collaboration.

Top Co-Authors

Avatar

Yu-Hsiang Sung

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Pai-Shan Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mei-I Leong

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Mahaveer B. Melwanki

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Zhen-Shan Liu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Che-Yi Lin

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Shih-Pin Huang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Jing-Shan Chiang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Kan-Jung Chia

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Wan-Chi Tseng

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge