Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shang Fa Yang is active.

Publication


Featured researches published by Shang Fa Yang.


Analytical Biochemistry | 1979

A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid

Ma. Concepcion; C. Lizada; Shang Fa Yang

Abstract A simple, rapid, and sensitive method for the quantitative determination of 1-amino-cyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene in plant tissues, is described. The assay is based on the liberation of ethylene from ACC with NaOCl in the presence of Hg 2+ ; ethylene is assayed by gas chromatography. The yield is normally 80% and can be determined by internal standards. The method is quite specific and can detect as little as 5 pmol of ACC.


Archives of Biochemistry and Biophysics | 1979

1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis.

Yeong-Biau Yu; Douglas O. Adams; Shang Fa Yang

Abstract 1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S -adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a K m of 20 μ m with respect to SAM. S -Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S -adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S -Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 μ m or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.


Biochemical and Biophysical Research Communications | 1982

Identification of 1-(malonylamino)cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plants

Neil E. Hoffman; Shang Fa Yang; Tom McKeon

Abstract When labeled 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, was administered to light-grown wheat leaves, it was primarily converted into a nonvolatile metabolite, which was identified as 1-(malonylamino)cyclopropane-1-carboxylic acid. The natural occurrence of this conjugate in the wilted wheat leaves was confirmed by gas chromatography-mass spectrometry.


Planta | 1982

The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves

Thomas A. McKeon; Neil E. Hoffman; Shang Fa Yang

Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.


Planta | 1982

Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide.

Ching Huei Kao; Shang Fa Yang

The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.


Plant Molecular Biology | 1997

Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum)

Jürg H. Oetiker; David C. Olson; Oi Yin Shiu; Shang Fa Yang

The key enzyme of ethylene biosynthesis, ACC synthase, is encoded by a multigene family. We describe three new DNA sequences encoding members of the ACC synthase family of the tomato. One of these sequences encodes a novel ACC synthase, LE-ACS6, which is phylogenetically related to the ACC synthases LE-ACS1A and LE-ACS1B. Gene-specific probes for seven tomato ACC synthase genes were prepared. They were used for RNase protection assays to study the accumulation of ACC synthase transcripts in suspension-cultured tomato cells after the addition of an elicitor.The ACC synthase genes LE-ACS2, LE-ACS5 and LE-ACS6 were strongly induced by the elicitor. In contrast, the genes LE-ACS1B, LE-ACS3 and LE-ACS4 were constitutively expressed and LE-ACS1B was present at all times at a particularly high level. Thus, there are two groups of ACC synthase transcripts expressed in these cells, either elicitor-induced or constitutive. A transcript of LE-ACS1A was not detected. Despite the presence of LE-ACS1B, LE-ACS2, LE-ACS3, LE-ACS4 and LE-ACS5, there was only little ethylene produced in the absence of the elicitor. Increased ethylene production is usually correlated with the accumulation of ACC synthase transcripts, indicating that ethylene production is controlled via the transcriptional activation of ACC synthase genes. However, the abundance of several ACC synthase mRNAs studied was not strictly correlated with the rate of elicitor-induced ethylene production. Our data provide evidence that the activity of these ACC synthases may not solely be controlled by the transcriptional activation of ACC synthase genes.


Planta | 1983

Changes in 1-(malonylamino)cyclopropane-1-carboxylic acid content in wilted wheat leaves in relation to their ethylene production rates and 1-aminocyclopropane-1-carboxylic acid content.

Neil E. Hoffman; Yu Liu; Shang Fa Yang

In excised wheat (Triticum aestivum L.) leaves, water-deficit stress resulted in a rapid increase, followed by a decrease, in ethylene production rates and in the levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. However, the level of N-malonyl-ACC (MACC), the major metabolite of ACC, increased gradually, then leveled off. This increase in MACC was much greater than the decrease in ACC level. The MACC levels were positively correlated with severity of water stress. Once established, the MACC levels did not decrease even after the stressed tissues were rehydrated. Administration of labeled ACC and MACC showed that the conjugation of ACC to MACC was essentially irreversible. Repeated wilting treatments following the first wilting and rehydration cycle resulted in no further increase in ethylene production and in the levels of ACC and MACC. However, when benzyladenine was supplied during the preceding rehydration process, subsequent wilting treatment resulted in a rise in MACC level and a rapid rise followed by a decline in ethylene production rates and in the level of ACC. The magnitude of these increases was, however, smaller in these rewilted tissues than that observed in the first wilting treatment. Since MACC accumulates with water stress and is not appreciably metabolized, the MACC level is a good indicator of the stress history in the detached leaves used.


Planta | 1980

Changes in 1-aminocyclopropane-1-carboxylic-acid content of cut carnation flowers in relation to their senescence

G. Bufler; Y. Mor; Michael S. Reid; Shang Fa Yang

The rise in ethylene production accompanying the respiration climacteric and senescence of cut carnation flowers (Dianthus caryophyllus L. cv. White Sim) was associated with a 30-fold increase in the concentration of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petals (initial content 0.3 nmol/g fresh weight). Pretreatment of the flowers with silver thiosulfate (STS) retarded flower senescence and prevented the increase in ACC concentration in the petals. An increase in ACC in the remaining flower parts, which appeared to precede the increase in the petals, was only partially prevented by the STS pretreatment. Addition of aminoxyacetic acid (2 mM) to the solution in which the flowers were kept completely inhibited accumulation of ACC in all flower parts.


Planta | 1994

Structure and expression of cDNAs encoding 1-aminocyclopropane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls

Woo Taek Kim; Shang Fa Yang

By screening a mung bean (Vigna radiata L.) hypocotyl cDNA library using a combination of apple (pAE12) and tomato (pTOM13) 1-aminocyclopropane1-carboxylate (ACC)-oxidase cDNAs as probes, putative ACC-oxidase clones were isolated. Based on restriction-enzyme map and DNA-sequencing analyses, they can be divided into two homology classes, represented by pVR-ACO1 and pVR-ACO2. While pVR-ACO1 and pVR-ACO2 exhibit close homology in their coding regions, their 3′-noncoding regions are divergent. pVR-ACO1 is a 1312-bp full-length clone and contains a single open reading frame encoding 317 amino acids (MW = 35.8 kDa), while pVR-ACO2 is 1172 bp long and is a partial cDNA clone encoding 308 amino acids. These two deduced amino-acid sequences share 83% identity, and display considerable sequence conservation (73–86%) to other ACC oxidases from various plant species. Northern blot analyses of RNAs isolated from hypocotyl, leaf, and stem tissues using gene-specific probes indicate that the pVR-ACO1 transcript is present in all parts of the seedling and that the expression in hypocotyls is further increased following excision. The maximum induction of ACC-oxidase transcripts occurred at about 6 h after excision, while the maximum enzyme activity was observed at 24 h. When excised hypocotyls were treated with ethylene a further enhanced level of transcripts was observed. Aminooxyacetic acid, an inhibitor of ACC-synthase activity, and 2,5-norbornadiene, an inhibitor of ethylene action, suppressed the wound-induced accumulation of ACC-oxidase mRNA, while an addition of ethylene in these tissues restored the accumulation of ACC-oxidase mRNA. These results indicate that the wound-induced expression of ACC-oxidase transcripts is mediated through wound-induced ethylene. Furthermore, when intact mung-bean seedlings were treated with exogenous ethylene, a marked increase in the level of ACC-oxidase mRNA was observed. Together, these results indicate that ethylene plays a key role in activating the expression of the ACC-oxidase gene in both intact and excised mung-bean hypocotyls.


Planta | 1991

Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit

Jian Guo Dong; Woo Taek Kim; Wing Kin Yip; Gregory A. Thompson; Liming Li; Alan B. Bennett; Shang Fa Yang

Abstract1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3′-end was intact, it lacked a portion of sequence at the 5′-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5′-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.

Collaboration


Dive into the Shang Fa Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeong-Biau Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Guo Dong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Li

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ling-Yuan Su

University of California

View shared research outputs
Top Co-Authors

Avatar

Oi-lim Lau

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge