Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shang-Tian Yang is active.

Publication


Featured researches published by Shang-Tian Yang.


Applied Biochemistry and Biotechnology | 2004

Continuous Production of Butanol by Clostridium acetobutylicum Immobilized in a Fibrous Bed Bioreactor

Wei-Cho Huang; David E. Ramey; Shang-Tian Yang

We explored the influence of dilution rate and pH in continuous cultures of Clostridium acetobutylicum. A 200-mL fibrous bed bioreactor was used to produce high cell density and butyrate concentrations at pH 5.4 and 35°C. By feeding glucose and butyrate as a cosubstrate, the fermentation was maintained in the solventogenesis phase, and the optimal butanol productivity of 4.6g/(L h) and a yield of 0.42 g/g were obtained at a dilution rate of 0.9h−1 and pH 4.3. Compared to the conventional acetone-butanol-ethanol fermentation, the new fermentation process greatly improved butanol yield, making butanol production from corn an attractive alternative to ethanol fermentation.


Bioresource Technology | 2012

Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping

Congcong Lu; Jingbo Zhao; Shang-Tian Yang; Dong Wei

Concentrated cassava bagasse hydrolysate (CBH) containing 584.4 g/L glucose was studied for acetone-butanol-ethanol (ABE) fermentation with a hyper-butanol-producing Clostridium acetobutylicum strain in a fibrous bed bioreactor with gas stripping for continuous butanol recovery. With periodical nutrient supplementation, stable production of n-butanol from glucose in the CBH was maintained in the fed-batch fermentation over 263 h with an average sugar consumption rate of 1.28 g/L h and butanol productivity of 0.32±0.03 g/L h. A total of 108.5 g/L ABE (butanol: 76.4 g/L, acetone: 27.0 g/L, ethanol: 5.1 g/L) was produced, with an overall yield of 0.32±0.03 g/g glucose for ABE and 0.23±0.01 g/g glucose for butanol. The gas stripping process generated a product containing 10-16% (w/v) of butanol, ~4% (w/v) of acetone, a small amount of ethanol (<0.8%) and almost no acids, resulting in a highly concentrated butanol solution of ~64% (w/v) after phase separation.


Biotechnology Progress | 2001

Effects of Filtration Seeding on Cell Density, Spatial Distribution, and Proliferation in Nonwoven Fibrous Matrices

Yan Li; Teng Ma; Douglas A. Kniss; Larry C. Lasky; Shang-Tian Yang

The cell seeding density and spatial distribution in a 3‐D scaffold are critical to the morphogenetic development of an engineered tissue. A dynamic depth‐filtration seeding method was developed to improve the initial cell seeding density and spatial distribution in 3‐D nonwoven fibrous matrices commonly used as tissue scaffolds. In this work, trophoblast‐like ED27 cells were seeded in poly(ethylene terephthalate) (PET) matrices with various porosities (0.85−0.93). The effects of the initial concentration of cells in the suspension used to seed the PET matrix and the pore size of the matrix on the resulting seeding density and subsequent cell proliferation and tissue development were studied. Compared to the conventional static seeding method, the dynamic depth‐filtration seeding method gave a significantly higher initial seeding density (2−4 × 107 vs 4 × 106 cells/cm3), more uniform cell distribution, and a higher final cell density in the tissue scaffold. The more uniform initial cell spatial distribution from the filtration seeding method also led to more cells in S phase and a prolonged proliferation period. However, both uniform spatial cell distribution and the pore size of the matrices are important to cell proliferation and morphological development in the seeded tissue scaffold. Large‐pore matrices led to the formation of cell aggregates and thus might reduce cell proliferation. The dynamic depth‐filtration seeding method is better in providing a higher initial seeding density and more uniform cell distribution and is easier to apply to large tissue scaffolds. A depth‐filtration model was also developed and can be used to simulate the seeding process and to predict the maximum initial seeding densities in matrices with different porosities.


Biotechnology and Bioengineering | 2012

High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping

Chuang Xue; Jingbo Zhao; Congcong Lu; Shang-Tian Yang; Feng-Wu Bai; I.-Ching Tang

Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ∼610 g/L butanol, ∼40 g/L acetone, ∼10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756.


Metabolic Engineering | 2011

Metabolic engineering of clostridium tyrobutyricum for butanol production

Shang-Tian Yang; Mingrui Yu

Clostridium tyrobutyricum ATCC 25755, a butyric acid producing bacterium, has been engineered to overexpress aldehyde/alcohol dehydrogenase 2 (adhE2, Genebank no. AF321779) from Clostridium acetobutylicum ATCC 824, which converts butyryl-CoA to butanol, under the control of native thiolase (thl) promoter. Butanol titer of 1.1g/L was obtained in C. tyrobutyricum overexpressing adhE2. The effects of inactivating acetate kinase (ack) and phosphotransbutyrylase (ptb) genes in the host on butanol production were then studied. A high C4/C2 product ratio of 10.6 (mol/mol) was obtained in ack knockout mutant, whereas a low C4/C2 product ratio of 1.4 (mol/mol) was obtained in ptb knockout mutant, confirming that ack and ptb genes play important roles in controlling metabolic flux distribution in C. tyrobutyricum. The highest butanol titer of 10.0g/L and butanol yield of 27.0% (w/w, 66% of theoretical yield) were achieved from glucose in the ack knockout mutant overexpressing adhE2. When a more reduced substrate mannitol was used, the butanol titer reached 16.0 g/L with 30.6% (w/w) yield (75% theoretical yield). Moreover, C. tyrobutyricum showed good butanol tolerance, with >80% and ∼60% relative growth rate at 1.0% and 1.5% (v/v) butanol. These results suggest that C. tyrobutyricum is a promising heterologous host for n-butanol production from renewable biomass.


Biotechnology Progress | 2008

Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production.

Xiaoguang Liu; Ying Zhu; Shang-Tian Yang

Clostridium tyrobutyricum produces butyrate, acetate, H2, and CO2 as its main fermentation products from glucose and xylose. To improve butyric acid and hydrogen production, integrational mutagenesis was used to create a metabolically engineered mutant with inactivated ack gene, encoding acetate kinase (AK) associated with the acetate formation pathway. A non‐replicative plasmid containing the acetate kinase gene (ack) fragment was constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome should inactivate the target ack gene and produce ack‐deleted mutant, PAK‐Em. Enzyme activity assays showed that the AK activity in PAK‐Em decreased by ∼50%; meanwhile, phosphotransacetylase (PTA) and hydrogenase activities each increased by ∼40%. The sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) results showed that the expression of protein with ∼32 kDa molecular mass was reduced significantly in the mutant. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37 °C, with a lower specific growth rate of 0.14 h−1 (vs 0.21 h−1 for the wild type), likely due to the partially impaired PTA‐AK pathway. However, the mutant produced 23.5% more butyrate (0.42 vs 0.34 g/g glucose) at a higher final concentration of 41.7 g/L (vs 19.98 g/L) as a result of its higher butyrate tolerance as indicated in the growth kinetics study using various intial concentrations of butyrate in the media. The mutant also produced 50% more hydrogen (0.024 g/g) from glucose than the wild type. Immobilized‐cell fermentation of PAK‐Em in a fibrous‐bed bioreactor (FBB) further increased the final butyric acid concentration (50.1 g/L) and the butyrate yield (0.45 g/g glucose). Furthermore, in the FBB fermentation at pH 5.0 with xylose as the substrate, only butyric acid was produced by the mutant, whereas the wild type produced large amounts of acetate (0.43 g/g xylose) and lactate (0.61 g/g xylose) and little butyrate (0.05 g/g xylose), indicating a dramatic metabolic pathway shift caused by the ack deletion in the mutant.


Journal of Biotechnology | 1999

Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor

Hojae Shim; Shang-Tian Yang

A fibrous-bed bioreactor containing the coculture of Pseudomonas putida and P. fluorescens immobilized in a fibrous matrix was developed to degrade benzene (B), toluene (T), ethylbenzene (E), and o-xylene (X) in synthetic waste streams. The kinetics of BTEX biodegradation by immobilized cells adapted in the fibrous-bed bioreactor and free cells grown in serum bottles were studied. In general, the BTEX biodegradation rate increased with increasing substrate concentration and then decreased after reaching a maximum, showing substrate-inhibition kinetics. However, for immobilized cells, the degradation rate was much higher than that of free cells. Compared to free cells, immobilized cells in the bioreactor tolerated higher concentrations (> 1000 mg l-1) of benzene and toluene, and gave at least 16-fold higher degradation rates for benzene, ethylbenzene, and o-xylene, and a 9-fold higher degradation rate for toluene. Complete and simultaneous degradation of BTEX mixture was achieved in the bioreactor under hypoxic conditions. Cells in the bioreactor were relatively insensitive to benzene toxicity; this insensitivity was attributed to adaptation of the cells in the bioreactor. Compared to the original seeding culture, the adapted cells from the fibrous-bed bioreactor had higher specific growth rate, benzene degradation rate, and cell yield when the benzene concentration was higher than 100 mg l-1. Cells in the fibrous bed had a long, slim morphology, which is different from the normal short-rod shape found for suspended cells in solution.


Bioresource Technology | 2002

Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor

Yu Liang Huang; Zetang Wu; Likun Zhang; Chun Ming Cheung; Shang-Tian Yang

Corn meal hydrolyzed with amylases was used as the carbon source for producing acetic, propionic, and butyric acids via anaerobic fermentations. In this study, corn meal, containing 75% (w/w) starch, 20% (w/w) fibers, and 1.5% (w/w) protein, was first hydrolyzed using amylases at 60 degrees C. The hydrolysis yielded approximately 100% recovery of starch converted to glucose and 17.9% recovery of protein. The resulting corn meal hydrolyzate was then used, after sterilization, for fermentation studies. A co-culture of Lactococcus lactis and Clostridium formicoaceticum was used to produce acetic acid from glucose. Propionibacterium acidipropionici was used for propionic acid fermentation, and Clostridium tyrobutylicum was used for butyric acid production. These cells were immobilized on a spirally wound fibrous matrix packed in a fibrous-bed bioreactor (FBB) developed for multi-phase biological reactions or fermentation. The bioreactor was connected to a stirred-tank fermentor that provided pH and temperature controls via medium circulation. The fermentation system was operated at the recycle batch mode. Temperature and pH were controlled at 37 degrees C and 7.6, respectively, for acetic acid fermentation, 32 degrees C and 6.0, respectively, for propionic acid fermentation, and 37 degrees C and 6.0, respectively, for butyric acid production. The fermentation demonstrated a yield of approximately 100% and a volumetric productivity of approximately 1 g/(1 h) for acetic acid production. The propionic acid fermentation achieved an approximately 60% yield and a productivity of 2.12 g/(1 h), whereas the butyric acid fermentation obtained an approximately 50% yield and a productivity of 6.78 g/(1 h). These results were comparable to, or better than those fermentations using chemically defined media containing glucose as the substrate, suggesting that these carboxylic acids can be efficiently produced from direct fermentation of corn meal hydrolyzate. The corn fiber present as suspended solids in the corn meal hydrolyzate did not cause operating problem to the immobilized cell bioreactor as is usually encountered by conventional immobilized cell bioreactor systems. It is concluded that the FBB technology is suitable for producing value-added biochemicals directly from agricultural residues or commodities such as corn meal.


Bioresource Technology | 2013

Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery.

Chuang Xue; Jingbo Zhao; Fangfang Liu; Congcong Lu; Shang-Tian Yang; Feng-Wu Bai

Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L·h vs. 0.30 g/L·h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy.


Tissue Engineering | 2001

Three-Dimensional Cell-Scaffold Constructs Promote Efficient Gene Transfection: Implications for Cell-Based Gene Therapy

Yubing Xie; Shang-Tian Yang; Douglas A. Kniss

To date, introduction of gene-modified cells in vivo is still a critical limitation for cell-based gene therapy. In this study, based on tissue engineering techniques, we developed a three-dimensional (3-D) transfection system to be cell-based gene delivery vehicle. Human trophoblast-like ED(27) and fibroblastic NIH3T3 cells were used as model cell lines. Cells were seeded onto PET fibrous matrices and plated on polyethylene terephathalate (PET) films as 2-D transfection control. The cell-matrices and cell-films were transfected with pCMV-betagal and pEGFP (green fluorescent protein) reporter gene vectors using LipofectAmine reagent. Gene expression on 3-D versus 2-D growth surface were investigated. The effects of seeding method, seeding density, porosity of the PET matrix, and culturing time of the cell-matrix complex on cDNA transfection and expression in the 3-D cell-matrix complex were also investigated. The beta-gal assay and GFP detection showed that 3-D transfection promoted a higher gene expression level and longer expression time as compared to 2-D transfection. There existed an optimal initial cell seeding density for gene transfection of 3-D cell-matrix complex. Cells seeded on PET matrices with a lower porosity ( approximately 87%) had higher gene expression activities than cells in the matrices with a higher porosity ( approximately 90%). Also, Higher gene expression levels of beta-gal were obtained for the more uniformly seeded matrices that were seeded with a depth-filtration method. The results from this study demonstrate the potential utility of cells seeded onto 3-D fibrous matrices as cell-based gene delivery vehicle for in vitro study of gene expression or in vivo gene therapy.

Collaboration


Dive into the Shang-Tian Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Li

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jufang Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge