Shangfeng Gao
Xuzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shangfeng Gao.
Journal of Neuro-oncology | 2015
Xuejiao Liu; Wei Cai; Mingshan Niu; Yulong Chong; Huize Liu; Wenqiang Hu; Dacheng Wang; Shangfeng Gao; Qiong Shi; Jinxia Hu; Xiuping Zhou; Rutong Yu
Plumbagin, a natural quinonoid constituent isolated from the root of medicinal plant Plumbago zeylanica L, has exhibited anti-tumor and anti-proliferative activities in various tumor cell lines as well as in animal tumor models. However, its anticancer effects and the mechanisms underlying its suppression of glioma cell growth have not been elucidated. Oncogenic transcription factor Forkhead Box M1 (FOXM1) has garnered particular interest in recent years as a potential target for the prevention and/or therapeutic intervention in glioma, nevertheless, less information is currently available regarding FOXM1 inhibitor. Here, we reported that plumbagin could effectively inhibit cell proliferation, migration and invasion and induce apoptosis of glioma cells. Cell cycle assay showed that plumbagin induced G2/M arrest. Interestingly, we found that plumbagin decreased the expression of FOXM1 both at mRNA level and protein level. Plumbagin also inhibited the transactivation ability of FOXM1, resulting in down-regulating the expression of FOXM1 downstream target genes, such as cyclin D1, Cdc25B, survivin, and increasing the expression of p21CIP1 and p27KIP1. Most importantly, down-regulation of FOXM1 by siFOXM1 transfection enhanced plumbagin-induced change in viability. On the contrary, over-expression of FOXM1 by cDNA transfection reduced plumbagin-induced glioma cell growth inhibition. These results suggest that plumbagin exhibits its anticancer activity partially by inactivation of FOXM1 signaling pathway in glioma cells. Our findings indicate that plumbagin may be considered as a potential natural FOXM1 inhibitor, which could contribute to the development of new anticancer agent for therapy of gliomas.
Journal of Hematology & Oncology | 2016
Xuejiao Liu; Yulong Chong; Yiming Tu; Ning Liu; Chenglong Yue; Zhenglei Qi; Huize Liu; Yao Yao; Hongmei Liu; Shangfeng Gao; Mingshan Niu; Rutong Yu
BackgroundMalignant gliomas are associated with a high mortality rate, and effective treatment options are limited. Thus, the development of novel targeted treatments to battle this deadly disease is imperative.MethodsIn this study, we investigated the in vitro effects of the novel reversible chromosomal region maintenance 1 (CRM1) inhibitor S109 on cell proliferation in human gliomas. S109 was also evaluated in an intracranial glioblastoma xenograft model.ResultsWe found that high expression of CRM1 in glioma is a predictor of short overall survival and poor patient outcome. Our data demonstrate that S109 significantly inhibits the proliferation of human glioma cells by inducing cell cycle arrest at the G1 phase. Notably, we observed that high-grade glioma cells are more sensitive to S109 treatment compared with low-grade glioma cells. In an intracranial mouse model, S109 significantly prolonged the survival of tumor-bearing animals without causing any obvious toxicity. Mechanistically, S109 treatment simultaneously perturbed the three core pathways (the RTK/AKT/Foxos signaling pathway and the p53 and Rb1 tumor-suppressor pathways) implicated in human glioma cells by promoting the nuclear retention of multiple tumor-suppressor proteins.ConclusionsTaken together, our study highlights the potential role of CRM1 as an attractive molecular target for the treatment of human glioma and indicates that CRM1 inhibition by S109 might represent a novel treatment approach.
Tumor Biology | 2016
Hao Zhang; Decheng Geng; Jian Gao; Yanhua Qi; Yi Shi; Yan Wang; Yang Jiang; Yu Zhang; Jiale Fu; Yu Dong; Shangfeng Gao; Rutong Yu; Xiuping Zhou
Dysregulation of Hippo/YAP signaling leads to aberrant cell growth and neoplasia. Although the roles and regulation of Hippo/YAP signaling were extensively studied in cancer biology recently, study systematically checking the expression pattern of core components of this pathway at the tumor tissue level remains lacking. In this study, we thoroughly examined the profile of core components of Hippo/YAP signaling in patient specimens both at the mRNA and at protein levels. We found that the mRNA level of YAP1/TAZ and their target genes, CRY61, CTGF, and BIRC5, was remarkably amplified in glioma tissues. Consistently, the protein level of YAP1/TAZ increased and meanwhile those of p-YAP1/p-TAZ and LATS1/2 decreased in gliomas. Unexpectedly, both the mRNA and protein levels of MST1/2 increased in the glioma tissues, inconsistent with its presumed tumor suppressor identity. In addition, over-expression of LATS2 decreased, while over-expression of YPA1 increased the cell proliferation ability. Furthermore, based on the data from the free public database, YAP1/TAZ and BIRC5 were positively associated with the prognosis of glioma patients, while LATS1/2 exhibited negative correlation with the glioma patient prognosis. Collectively, we deduce that, in glioma tissue context, MST1/2 may not be the essential component of the hippo/YAP pathway. Moreover, our findings uncover a new evidence supporting that YAP1/TAZ-BIRC5 might be abnormally activated due to LATS1/2 down-regulation, which in turn promote the occurrence and development of gliomas, paving the way to identify the potential therapeutic molecular target for gliomas.
Brain Research Bulletin | 2016
Jie Wang; Lei Jin; Yufu Zhu; Xiuping Zhou; Rutong Yu; Shangfeng Gao
Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP, previously named CAPON) was firstly identified in rat brain in 1998. Structurally, NOS1AP consists of a phosphotyrosine-binding (PTB) domain at its N-terminal and a PDZ (PSD-95/discs-large/ZO-1) ligand motif at its C-terminal. The PTB domain of NOS1AP mediates the interactions with Dexras1, scribble, and synapsins. The PDZ ligand motif of NOS1AP binds to the PDZ domain of NOS1, the enzyme responsible for nitric oxide synthesis in the nervous system. NOS1AP is implicated in Dexras1 activation, neuronal nitric oxide production, Hippo pathway signaling, and dendritic development through the association with these important partners. An increasing body of evidence is pointing to the significant roles of NOS1AP in excitotoxic neuronal damage, traumatic nervous system injury, bipolar disorder, and schizophrenia. However, the study progress in NOS1AP in neurological or psychiatric diseases, has not been systematically reviewed. Here we introduce the expression, structure, and isoforms of NOS1AP, then summarize the physiological roles of NOS1AP, and discuss the relationships between NOS1AP alterations and the pathophysiology of some neurological and psychiatric disorders. The review will promote the further investigation of NOS1AP in brain disorders and the development of drugs targeting the NOS1AP PTB domain or PDZ-binding motif in the future.
Neuropharmacology | 2016
Shangfeng Gao; Jianbing Mo; Long Chen; Yan Wang; Xueqiang Mao; Yi Shi; Xianfeng Zhang; Rutong Yu; Xiuping Zhou
Stroke is the fifth leading cause of death for Americans, and about 87% of all strokes are ischemic strokes. Astrogliosis plays a crucial role in the pathophysiology of delayed neuronal death (DND) following ischemic stroke. Here we reported that astrocyte geranylgeranyltransferase I (GGTI)-mediated Rac1 activation up-regulated NF-κB expression and promoted the neuronal apoptosis after oxygen-glucose deprivation followed by oxygen-glucose regeneration (OGD/R). We found that GGTIβ (a specific subunit of GGTI) and NF-κB-p65 levels as determined by Western blot and/or immunofluorescent analysis were significantly up-regulated in the reactive astrocytes both in rat transient middle cerebral artery occlusion (tMCAO) and in cell OGD/R models. The increased expression of GGTIβ and p65 was associated with the DND in the ischemic brain. Inhibiting astrocyte GGTI activity by its specific inhibitor GGTi-2147 treatment reduced the activity of Rac1 (one of substrates for GGTI), down-regulated the expression of p65, and ameliorated the OGD/R-induced neuronal apoptosis. Astrocytes transfected with wild type Rac1, but not the unprenylated Rac1, up-regulated the p65 protein levels and promoted the co-cultured neuronal apoptosis. Furthermore, over-expression of unprenylated Rac1 in astrocytes significantly decreased the neuronal apoptosis. In addition, over-expression of NF-κB-p65 in astrocytes significantly increased the co-cultured neuronal apoptosis under OGD/R condition. Our findings suggest that astrocyte GGTI-mediated Rac1 activation contributed to the DND and that GGTI-Rac1-NF-κB signaling may be a potential target for the therapy of ischemic stroke.
Hippocampus | 2015
Maochun Yuan; Shangfeng Gao; Chengdong Sun; Long Chen; Qiong Shi; Jinxia Hu; Rutong Yu; Xiuping Zhou
Geranylgeranyltransferase I (GGT), a protein prenyltransferase, is responsible for the posttranslational lipidation of Rho GTPases, such as Rac, Rho and Cdc42, all of which play an important role in neuronal synaptogenesis. We previously demonstrated that GGT promotes dendritic morphogenesis in cultured hippocampal neurons and cerebellar slices. We report here that inhibiting GGT activity decreases basal‐ and activity‐dependent changes in spine density as well as in learning and memory ability of mice in vivo. We found that KCl‐ or bicuculline‐induced dendritic spine density increases was abolished by specific GGT inhibitor GGTi‐2147 treatment in cultured hippocampal neurons. GGTi‐2147 lateral ventricular injection reduced GGT activity and membrane association of Rac and decreased the density of dendritic spines in the mouse hippocampus, frontal cortex and cerebellum. GGTi‐2147 administration also impaired learning and memory ability of mice. More importantly, mice exposed to environmental enrichment (EE) showed increased spine density and learning and memory ability, which were significantly reversed by GGTi‐2147 administration. These data demonstrate that inhibiting GGT activity prevents both basal‐ and activity‐dependent changes in spine density in central nervous system both in vitro and in vivo. Manipulating GGT activity may be a promising strategy for the therapies of neurodevelopmental disorders, such as autism, depression, and schizophrenia.
Molecular Neurobiology | 2017
Shenshan Zou; Yufu Zhu; Bin Wang; Fengyuan Qian; Xiang Zhang; Lei Wang; Chunling Fu; Hanmo Bao; Manyi Xie; Shangfeng Gao; Rutong Yu; Hengliang Shi
Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.
Molecular Neurobiology | 2016
Shangfeng Gao; Rutong Yu; Xiuping Zhou
Isoprenylation is a posttranslational modification that transfers farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP) to cysteine residues of a particular set of proteins, causing their localization to the plasma membrane and other cellular compartments and so rendering them biologically active. Such a modification process, catalyzed by protein prenyltransferase including farnesyltransferase (FT), geranylgeranyltransferase I (GGTI), and geranylgeranyltransferase II (GGTII), is required for the transforming activity of many oncogenic proteins, including some RAS family members. In the past three decades, prenyltransferase has been extensively studied as a promising cancer therapeutic target in vitro, in animal models, and in the clinic. Recently, a growing number of studies suggest that prenyltransferases and the substrates FPP and GGPP also play fundamental roles in nervous system development and brain disorders. However, a systemic review about the advances of prenyltransferases in the field of neuroscience is lacking so far. Herein, we give a brief introduction for the structure and distribution of GGTI and comprehensively updated the recent advances of GGTI in neuronal dendritogenesis/synaptogenesis and in learning/memory-related behavioral performance. More importantly, we discussed the involvement of GGTI and its substrate GGPP in neurodegenerative disorders, such as aging, Alzheimer’s disease, multiple sclerosis, and Niemann-Pick disease type C. The role of FT-FPP and GGTII is mentioned as well to compare with GGTI in these physiological and pathological processes. We hope that this systematical review about what we know about GGTI research in the brain can stimulate further studies on the underlying mechanism of GGTI-mediated isoprenylation in the pathogenesis of neurodegenerative and neurodevelopmental disorders.
International Journal of Molecular Sciences | 2016
Shangfeng Gao; Jie Wang; Tong Zhang; Guangping Liu; Lei Jin; Daofei Ji; Peng Wang; Qingming Meng; Yufu Zhu; Rutong Yu
CAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation.
Scientific Reports | 2017
Shangfeng Gao; Lei Jin; Guangping Liu; Peng Wang; Zonghan Sun; Yujia Cao; Hengliang Shi; Xuejiao Liu; Qiong Shi; Xiuping Zhou; Rutong Yu
The RAS signaling pathway is hyperactive in malignant glioma due to overexpression and/or increased activity. A previous study identified that RASD1, a member of the RAS superfamily of small G-proteins, is a significantly dysregulated gene in oligodendroglial tumors that responded to chemotherapy. However, the role and mechanism of RASD1 in the progression of human glioma remain largely unknown. In the present study, by analyzing a public genomics database, we found that high levels of RASD1 predicted good survival of astrocytoma patients. We thus established lentivirus-mediated RASD1-overexpressing glioma cells and found that overexpressing RASD1 had no significant effects on glioma cell proliferation. However, the overexpression of RASD1 inhibited glioma cell migration and invasion. In the intracranial glioma xenograft model, the overexpression of RASD1 significantly reduced the number of tumor cells invading into the surrounding tissues without affecting the tumor size. An intracellular signaling array revealed that the phosphorylation of both AKT and the S6 ribosomal protein significantly decreased with RASD1 overexpression in glioma cells. Interestingly, RASD1 protein levels were significantly higher in grade II and grade III astrocytoma tissues than in nontumorous brain tissues. These findings suggest that the upregulation of RASD1 in glioma tissues may play an inhibitory role in tumor expansion, possibly through inactivating the AKT/mTOR signaling pathway.