Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shankar Mukherjee is active.

Publication


Featured researches published by Shankar Mukherjee.


Journal of Biological Chemistry | 2005

The adipocyte as an important target cell for Trypanosoma cruzi infection

Terry P. Combs; Nagajyothi; Shankar Mukherjee; Cecilia J. de Almeida; Linda A. Jelicks; William Schubert; Ying Lin; David S. Jayabalan; Dazhi Zhao; Vicki L. Braunstein; Shira Landskroner-Eiger; Aisha Cordero; Stephen M. Factor; Louis M. Weiss; Michael P. Lisanti; Herbert B. Tanowitz; Philipp E. Scherer

Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.


Cellular Microbiology | 2012

Mechanisms of Trypanosoma cruzi persistence in Chagas disease

Fnu Nagajyothi; Fabiana S. Machado; Barbara A. Burleigh; Linda A. Jelicks; Philipp E. Scherer; Shankar Mukherjee; Michael P. Lisanti; Louis M. Weiss; Nisha Jain Garg; Herbert B. Tanowitz

Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A2 to evade phagosomal oxidative assault and suppress the hosts ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic‐like relationship with the host, and ensure consistent supply of nutrients for its own survival and long‐term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.


Infection and Immunity | 2005

Role of Endothelin 1 in the Pathogenesis of Chronic Chagasic Heart Disease

Herbert B. Tanowitz; Huan Huang; Linda A. Jelicks; Madhulika Chandra; Maria L. Loredo; Louis M. Weiss; Stephen M. Factor; Vitaliy Shtutin; Shankar Mukherjee; Richard N. Kitsis; George J. Christ; Murray Wittner; Jamshid Shirani; Masashi Yanagisawa

ABSTRACT On the basis of previous observations, endothelin 1 (ET-1) has been suggested as contributing to the pathogenesis of Chagasic cardiomyopathy. Therefore, ET-1flox/flox;α-MHC-Cre(+) mice in which the ET-1 gene was deleted from cardiac myocytes and ET-1flox/flox;Tie 2 Cre(+) mice in which the ET-1 gene was deleted from endothelial cells were infected with Trypanosoma cruzi. Genetic controls for these cell-specific ET-1 knockout mice were used. Ninety percentage of all mice survived acute infection with the Brazil strain and were evaluated 130 days postinfection. Inflammation and fibrosis were observed in all infected mice; however, fibrosis was reduced in ET-1flox/flox;α-MHC-Cre(+) mice. Cardiac magnetic resonance imaging revealed that infection resulted in a significant increase in right ventricular internal diameter (RVID) in all mice except ET-1flox/flox;α-MHC-Cre(+) mice; i.e., RVID was not changed in infected ET-1flox/flox;α-MHC-Cre(+) mice. Echocardiography of the left ventricle demonstrated increased left ventricular end-diastolic diameter, reduced fractional shortening, and decreased relative wall thickness in infected mice. However, the magnitude of the changes was significantly less in ET-1flox/flox;α-MHC-Cre(+) mice compared to other groups. These data provide further evidence of a role for ET-1, particularly cardiac myocyte-derived ET-1, in the pathogenesis of chronic Chagasic cardiomyopathy.


Cardiology in Review | 2012

Chagas Heart Disease: Report on Recent Developments

Fabiana S. Machado; Linda A. Jelicks; Louis V. Kirchhoff; Jamshid Shirani; Fnu Nagajyothi; Shankar Mukherjee; Randin Nelson; Christina M. Coyle; David C. Spray; Antonio Carlos Campos de Carvalho; Fangxia Guan; Cibele M. Prado; Michael P. Lisanti; Louis M. Weiss; Susan P. Montgomery; Herbert B. Tanowitz

Chagas disease, caused by the parasite Trypanosoma cruzi, is an important cause of cardiac disease in endemic areas of Latin America. It is now being diagnosed in nonendemic areas because of immigration. Typical cardiac manifestations of Chagas disease include dilated cardiomyopathy, congestive heart failure, arrhythmias, cardioembolism, and stroke. Clinical and laboratory-based research to define the pathology resulting from T. cruzi infection has shed light on many of the cellular and molecular mechanisms leading to these manifestations. Antiparasitic treatment may not be appropriate for patients with advanced cardiac disease. Clinical management of Chagas heart disease is similar to that used for cardiomyopathies caused by other processes. Cardiac transplantation has been successfully performed in a small number of patients with Chagas heart disease.


Infection and Immunity | 2004

Trypanosoma cruzi Infection Activates Extracellular Signal-Regulated Kinase in Cultured Endothelial and Smooth Muscle Cells

Shankar Mukherjee; Huan Huang; Stefka B. Petkova; Chris Albanese; Richard G. Pestell; Vicki L. Braunstein; George J. Christ; Murray Wittner; Michael P. Lisanti; Joan W. Berman; Louis M. Weiss; Herbert B. Tanowitz

ABSTRACT Trypanosoma cruzi infection causes cardiomyopathy and vasculopathy. We examined the consequence of this infection for the mitogen-activated protein kinase (MAPK) pathways, which regulate cell proliferation in cultured human umbilical vein endothelial and vascular smooth muscle cells. Infection of these cells resulted in activation of extracellular signal-regulated kinases 1and 2 (ERK1/2) but not c-Jun N-terminal kinase or p38 MAPK. Treatment of these cells with the MAPK kinase inhibitor PD98059 prior to infection blocked the increase in phosphorylated ERK1/2 seen with infection. Heat-killed parasites did not activate ERK1/2, indicating that activation of ERK1/2 was dependent on infection of these cells by live parasites. Furthermore, transfection with dominant-negative Raf(301) or Ras(N17) constructs reduced the infection-associated levels of phospho-ERK1/2, indicating that the activation of ERK1/2 involved the Ras-Raf-ERK pathway. Infection also resulted in an increase in activator protein 1 (AP-1) activity, which was inhibited by transfection with a dominant-negative Raf(301) construct. T. cruzi-infected endothelial cells secreted endothelin-1 and interleukin-1β, which activated ERK1/2 and induced cyclin D1 expression in uninfected smooth muscle cells. These data suggest a possible molecular paradigm for the pathogenesis of the vasculopathy and the cardiovascular remodeling associated with T. cruzi infection.


Infection and Immunity | 2003

Activation of Transcription Factors AP-1 and NF-κB in Murine Chagasic Myocarditis

Huan Huang; Stefka B. Petkova; Alex W. Cohen; Boumediene Bouzahzah; John S.D. Chan; Jian nian Zhou; Stephen M. Factor; Louis M. Weiss; Mohan Krishnamachary; Shankar Mukherjee; Murray Wittner; Richard N. Kitsis; Richard G. Pestell; Michael P. Lisanti; Chris Albanese; Herbert B. Tanowitz

ABSTRACT The myocardium of CD1 mice was examined for the activation of signal transduction pathways leading to cardiac inflammation and subsequent remodeling during Trypanosoma cruzi infection (Brazil strain). The activity of three pathways of the mitogen-activated protein kinases (MAPKs) was determined. Immunoblotting revealed a persistent elevation of phosphorylated (activated) extracellular-signal-regulated kinase (ERK), which regulates cell proliferation. During infection there was a transient activation of p38 MAPK but no activation of Jun N-terminal kinase. Early targets of activated ERK, c-Jun and c-Fos, were elevated during infection, as demonstrated by semiquantitative reverse transcription-PCR. Immunostaining revealed that the endothelium and the interstitial cells were most intensely stained with antibodies to c-Jun and c-Fos. Soon after infection, AP-1 and NF-κB DNA binding activity was increased. Protein levels of cyclin D1, the downstream target of ERK and NF-κB, were induced during acute infection. Immunostaining demonstrated increased expression of cyclin D1 in the vascular and endocardial endothelium, inflammatory cells, and the interstitial areas. Increased expression of the cyclin D1-specific phosphorylated retinoblastoma protein (Ser780) was also evident. Immunoblotting and immunostaining also demonstrated increased expression of proliferating cellular nuclear antigen that was predominantly present in the inflammatory cells, interstitial areas (i.e., fibroblasts), and endothelium. These data demonstrate that T. cruzi infection results in activation of the ERK-AP-1 pathway and NF-κB. Cyclin D1 expression was also increased. These observations provide a molecular basis for the activation of pathways involved in cardiac remodeling in chagasic cardiomyopathy.


PLOS ONE | 2011

Aspirin treatment of mice infected with Trypanosoma cruzi and implications for the pathogenesis of Chagas disease

Shankar Mukherjee; Fabiana S. Machado; Huang Huang; Helieh S. Oz; Linda A. Jelicks; Cibele M. Prado; Wade Koba; Eugene J. Fine; Dazhi Zhao; Stephen M. Factor; J. Elias Collado; Louis M. Weiss; Herbert B. Tanowitz; Anthony W. Ashton

Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.


Parasitology Research | 2009

Perspectives on the Trypanosoma cruzi–host cell receptor interactions

Fernando Villalta; Julio Scharfstein; Anthony W. Ashton; Kevin M. Tyler; Fangxia Guan; Shankar Mukherjee; Maria F. Lima; Sandra Alvarez; Louis M. Weiss; Huan Huang; Fabiana S. Machado; Herbert B. Tanowitz

Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets.


Infection and Immunity | 2003

Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis.

Huan Huang; Stefka B. Petkova; Alex W. Cohen; Boumediene Bouzahzah; John S.D. Chan; Jian-nian Zhou; Stephen M. Factor; Louis M. Weiss; Mohan Krishnamachary; Shankar Mukherjee; Murray Wittner; Richard N. Kitsis; Richard G. Pestell; Michael P. Lisanti; Christopher Albanese; Herbert B. Tanowitz

ABSTRACT The myocardium of CD1 mice was examined for the activation of signal transduction pathways leading to cardiac inflammation and subsequent remodeling during Trypanosoma cruzi infection (Brazil strain). The activity of three pathways of the mitogen-activated protein kinases (MAPKs) was determined. Immunoblotting revealed a persistent elevation of phosphorylated (activated) extracellular-signal-regulated kinase (ERK), which regulates cell proliferation. During infection there was a transient activation of p38 MAPK but no activation of Jun N-terminal kinase. Early targets of activated ERK, c-Jun and c-Fos, were elevated during infection, as demonstrated by semiquantitative reverse transcription-PCR. Immunostaining revealed that the endothelium and the interstitial cells were most intensely stained with antibodies to c-Jun and c-Fos. Soon after infection, AP-1 and NF-κB DNA binding activity was increased. Protein levels of cyclin D1, the downstream target of ERK and NF-κB, were induced during acute infection. Immunostaining demonstrated increased expression of cyclin D1 in the vascular and endocardial endothelium, inflammatory cells, and the interstitial areas. Increased expression of the cyclin D1-specific phosphorylated retinoblastoma protein (Ser780) was also evident. Immunoblotting and immunostaining also demonstrated increased expression of proliferating cellular nuclear antigen that was predominantly present in the inflammatory cells, interstitial areas (i.e., fibroblasts), and endothelium. These data demonstrate that T. cruzi infection results in activation of the ERK-AP-1 pathway and NF-κB. Cyclin D1 expression was also increased. These observations provide a molecular basis for the activation of pathways involved in cardiac remodeling in chagasic cardiomyopathy.


Infection and Immunity | 2006

Trypanosoma cruzi infection induces proliferation of vascular smooth muscle cells.

Ghada S. Hassan; Shankar Mukherjee; Fnu Nagajyothi; Louis M. Weiss; Stefka B. Petkova; Cecilia J. de Almeida; Huan Huang; Mahalia S. Desruisseaux; Boumediene Bouzahzah; Richard G. Pestell; Chris Albanese; George J. Christ; Michael P. Lisanti; Herbert B. Tanowitz

ABSTRACT Trypanosoma cruzi infection causes cardiomyopathy and vasculopathy. Previous studies have demonstrated that infection of human umbilical vein endothelial and smooth muscle cells resulted in activation of extracellular signal-regulated kinase (ERK). In the present study, smooth muscle cells were infected with trypomastigotes, and immunoblot analysis revealed an increase in the expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), important mediators of smooth muscle cell proliferation. Interestingly, after infection, the expression of caveolin-1 was reduced in both human umbilical vein endothelial cells and smooth muscle cells. Immunoblot and immunohistochemical analyses of lysates of carotid arteries obtained from infected mice revealed increased expression of PCNA, cyclin D1, its substrate, phospho-Rb (Ser780), and phospho-ERK1/2. The expression of the cyclin-dependent kinase inhibitor p21Cip1/Waf1, caveolin-1, and caveolin-3 was reduced in carotid arteries obtained from infected mice. There was an increase in the abundance of pre-pro-endothelin-1 mRNA in the carotid artery and aorta from infected mice. The ETA receptor was also elevated in infected arteries. ERK activates endothelin-1, which in turn exerts positive feedback activating ERK, and cyclin D1 is a downstream target of both endothelin-1 and ERK. There was significant incorporation of bromodeoxyuridine into smooth muscle cell DNA when treatment was with conditioned medium obtained from infected endothelial cells. Taken together, these data suggest that T. cruzi infection stimulates smooth muscle cell proliferation and is likely a result of the upregulation of the ERK-cyclin D1-endothelin-1 pathway.

Collaboration


Dive into the Shankar Mukherjee's collaboration.

Top Co-Authors

Avatar

Herbert B. Tanowitz

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Louis M. Weiss

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Huan Huang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda A. Jelicks

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fabiana S. Machado

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony W. Ashton

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Boumediene Bouzahzah

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge