Shanlei Sun
Nanjing University of Information Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shanlei Sun.
Theoretical and Applied Climatology | 2013
Jin Huang; Shanlei Sun; Jinchi Zhang
Changes in precipitation exert an enormous impact on human life, and it is of vital importance to study regular patterns of meteorological and hydrological events. In order to explore the changing spatial and temporal patterns of precipitation amounts, precipitation extremes and precipitation concentration in Jiangxi province in southeast China between 1960 and 2008, several precipitation indices series were analysed using the Mann–Kendall test in this study. Our results indicate remarkable differences among the stations with negative and positive precipitation trends at the annual, seasonal and monthly scales, significant increasing trends are mainly found during January, August, winter and summer, while significant decreasing trends mostly are observed during October and autumn. For precipitation extremes, most precipitation indices suggest that both the intensity and the days of extreme precipitation are increasing; the mean precipitation amount, especially, on a wet day shows a significant positive trend. When it comes to precipitation concentration, the monthly rainfall heterogeneity shows an insignificant downward trend, while the contribution of the days with greatest rainfall displays an insignificant upward trend. Furthermore, the long-range persistence is detected for changing process of precipitation amount, extreme precipitation and precipitation concentration using the Rescaled Range Analysis.
Water Resources Management | 2014
Jin Huang; Shanlei Sun; Yan Xue; Jinjian Li; Jinchi Zhang
Changes in precipitation exerts a huge impact on human beings and it is of vital importance to study the regular pattern of meteorological and hydrological factors. In order to explore the changing patterns of precipitation in Sichuan province in west China during 1961–2008, several precipitation related indices were analysed by the Mann–Kendall test. For monthly precipitation, significant increasing trends are mainly found during January, March and June, while significant decreasing trends mostly are observed during July, September and October. Most of extreme precipitation indices are decreasing. Especially the annual total precipitation in wet days and maximum number of consecutive wet days show significant negative trends. Furthermore, the spatial and temporal variation of dryness/wetness has been assessed by Standardized Precipitation Index (SPI) and principal component analysis (PCA) on 24-month time scales. The results demonstrated noticeable spatial patterns with several sub-regions characterized by different trends: a remarkable dry tendency prevails in central and east Sichuan, while the other areas are dominated by a wet tendency.
Theoretical and Applied Climatology | 2014
Jin Huang; Shanlei Sun; Yan Xue; Jinchi Zhang
Based on daily precipitation records at 75 meteorological stations in Hunan Province, central south China, the spatial and temporal variability of precipitation indices is analyzed during 1961–2010. For precipitation extremes, most of precipitation indices suggest that both the amount and the intensity of extreme precipitation are increasing, especially the mean precipitation amount on a wet day, showing a significant positive trend. Meanwhile, both of the monthly rainfall heterogeneity and the contribution of the days with the greatest rainfall show an upward trend. When it comes to rainfall erosivity, most of this province is characterized by high values of annual rainfall erosivity. Although the directions of trends in annual rainfall erosivity at most stations are upward, only 6 of the 75 stations have significant trends. Furthermore, the spatial and temporal variation of dryness/wetness has been assessed by the standardized precipitation index (SPI). The principal component analysis (PCA) was applied to the SPI series computed on 24-month time scales. The results demonstrated a noticeable spatial variability with three subregions characterized by different trends: a remarkable wet tendency prevails in the central and southern areas, while the northern areas are dominated by a remarkable dry tendency.
Climate Dynamics | 2017
Shanlei Sun; Haishan Chen; Weimin Ju; Guojie Wang; Ge Sun; Jin Huang; Hedi Ma; Chujie Gao; Wenjian Hua; Guixia Yan
Under the exacerbation of climate change, climate extreme events, especially for drought, happened frequently and intensively across the globe with greater spatial differences. We used the Standardized Precipitation-Evapotranspiration Index computed from the routine meteorological observations at 269 sites in Southwest China (SWC) to study the drought characteristics (e.g., extent, duration and intensity) and their decadal variations during 1971–2012. It was revealed that the drought, in responses to the coupling between decadal precipitation and potential evapotranspiration (PET) anomalies, differed among regions and periods. For the entire SWC, droughts in 1970s and 2000s+ was generally stronger than in 1980s and 1990s with respect to their spatial extent, duration and intensity, especially in 2000s+. It was well-known that drought was closely related with a lack of precipitation; however, the impact of atmospheric demand of evaporation (reflected by PET here) on drought (e.g., duration and intensity) was rarely paid enough attentions. To that end, a spatial multi-linear regression approach was proposed in this study for quantifying the contributions of decadal PET and precipitation variations to drought duration and intensity. We have found that the contributions of decadal PET anomalies to drought duration and intensity could exceed those of precipitation, e.g., during 1980s and 1990s in SWC. Additionally, despite the strongest droughts in 2000s+, it was suggested that PET could exert comparable impacts on drought anomalies as precipitation. All these findings implied that PET plays a critical role in drought event, which acts to amplify drought duration and intensity. To sum up, this study stressed the need for enough attentions for PET processes in drought studies.
Journal of Geophysical Research | 2016
Shanlei Sun; Haishan Chen; Guojie Wang; Jinjian Li; Mengyuan Mu; Guixia Yan; Bei Xu; Jin Huang; Jie Wang; Fangmin Zhang; Siguang Zhu
During 1961–2012, the regional average annual potential evapotranspiration (PET) of Southwest China (SWC) and the four subregions (named as SR1, SR2, SR3, and SR4) showed different decreases (excluding SR3); while the breakpoint analysis suggested that PET changes (i.e., sign and magnitude) have shifted. Based on a group of sensitivity experiments with Penman-Monteith equation and a new separating method, the contributions of each climate factor alone (i.e., net radiation, Rn; mean temperature, Tave; wind speed, Wnd; and vapor pressure deficit, Vpd) to PET changes were calculated. Results showed that declined Wnd in SR1, reduced Rn in SR2, SR4, and SWC, and increased Vpd in SR3 were responsible for the PET changes during 1961–2012. However, the determinant factor for each subregion and SWC varied in different segmented periods, which were identified using the breakpoint analysis. The impacts of PET shifts on SWC dryness/wetness (reflected by the 3 month Standardized Precipitation-Evapotranspiration index, SPEI-3) during 1961–2012 were then quantified. Briefly, SPEI-3 changes in SR3, SR4, and SWC had the determinant factor of PET in the first one or two period(s), and precipitation in the last period; while they were attributed to PET (precipitation) in SR1 (SR2) for each segmented period. It is found that PET and precipitation had comparable contributions to the variations in SWC dryness/wetness. Our findings have suggested that more attentions should be paid to the impacts of PET changes and shifts in future studies of dryness/wetness or drought.
Theoretical and Applied Climatology | 2013
Weiping Lou; Shanlei Sun
This paper proposes a method to design freezing damage policy-based agricultural insurance contracts for tea trees (an economic crop) in the Zhejiang Province of China, using a weather index. Data of economic losses caused by freezing damage, and the beginning dates of tea plucking (BDTP) from the Agricultural Bureau of each county in Zhejiang Province and tea planters, and meteorological observations were collected to establish the prediction model for BDTP, and to determine the relationship between economic loss rates caused by freezing damage at or before BDTP, and the minimum temperatures for “Wuniuzao,” “Longjing-43,” and “Jiukeng” teas. Based on the information diffusion theoretical model, occurrence probabilities of BDTP from 1 February to 20 April and lower temperatures at different levels are calculated. Then, the insurance premium rates of the three tea tree species can be estimated. Lastly, the tea tree freezing damage insurance contracts are designed, combining the advantages of regional yield-based index insurance and weather-based index insurance.
Stochastic Environmental Research and Risk Assessment | 2015
Jin Huang; Fengling Liu; Yan Xue; Shanlei Sun
Understanding precipitation variations from various aspects is important for the assessment of drought risk and the utilization of water resources. The precipitation concentration index (PCI) and the concentration index (CI) were used to investigate/quantify the heterogeneity of the monthly and daily rainfall in Qinghai province that is part of northwestern China, respectively. The precipitation concentration in Qinghai shows a significant irregularity of the monthly rainfall distribution and highly homogeneous distribution of the daily rainfall. It is found that PCI and CI show negative trends at most stations. Meanwhile, the spatial and temporal variation of nine dry spell (DS) indices are analyzed. From the spatial perspective, drought in the northwestern area is much severer than that in other areas of Qinghai. According to the results of temporal analysis by using the Mann–Kendall test, the number of very long DSs, maximum length of DS, mean length of DSs, and the total dry days of extreme DS all decrease. All these results verify that the warm dry climatic pattern in Qinghai can be changed into the warm wet climatic pattern.
Meteorology and Atmospheric Physics | 2015
Jin Huang; Shanlei Sun; Yan Xue; Jinchi Zhang
Based on daily precipitation records at 46 meteorological stations in Inner Mongolia, northern China, the space and time changes in precipitation characteristics are analyzed by defining 15 precipitation indices. The Mann–Kendall trend test is used to detect trends in the precipitation indices series. Results indicate that: (1) Inner Mongolia is dominated by decreasing precipitation, and precipitation deficit may further deteriorate the shortage of water resources; (2) precipitation extremes are not dominant in this province, and most extreme precipitation indices are generally decreasing; (3) wet spells with short duration are prevalent in this province and the occurrence and fractional contribution of short-duration wet spells are increasing; (4) daily precipitation events with light and moderate intensity are dominant in this province and the occurrence and fractional contribution of moderate precipitation are increasing; (5) a higher risk of droughts can be expected in summer and precipitation in winter and spring is increasing, which imply evident seasonality and seasonal shifts of precipitation changes within this province.
Journal of Hydrometeorology | 2017
Shanlei Sun; Haishan Chen; Ge Sun; Weimin Ju; Guojie Wang; Xing Li; Guixia Yan; Chujie Gao; Jin Huang; Fangmin Zhang; Siguang Zhu; Wenjian Hua
AbstractThis study investigated monthly and annual reference evapotranspiration changes over southwestern China (SWC) from 1960 to 2012, using the Food and Agriculture Organization of the United Nations’ report 56 (FAO-56) Penman–Monteith equation and routine meteorological observations at 269 weather sites. During 1960–2012, the monthly and annual decreased at most sites. Moreover, the SWC regional average trend in annual was significantly negative (p < 0.05); this trend was the same in most months. A new separation method using several numerical experiments was proposed to quantify each driving factor’s contribution to changes and exhibited higher accuracy based on several validation criteria, after which an attribution analysis was performed. Across SWC, the declining annual was mainly due to decreased net radiation (RN). Spatially, the annual changes at most sites in eastern SWC (excluding southeastern West Guangxi) were generally due to RN, whereas wind speed (WND) or vapor pressure deficit (VPD) was...
Journal of Geophysical Research | 2015
Haishan Chen; Hedi Ma; Xing Li; Shanlei Sun
Solar influences on spatial patterns of Eurasian winter climate and possible mechanisms are investigated based on a multiple linear regression method and multisource observational and reanalysis data. Robust and significant solar signals are detected in Eurasian surface air temperature (SAT), and strong solar activity evidently warms most area of the continent. The spatial pattern of sea level pressure (SLP) responses to solar activity is similar but not identical to that of the North Atlantic Oscillation (NAO). Compared to the NAO, geographic distribution of solar-induced SLP anomalies shifts eastward, with significantly enhanced influences over northern Eurasia. Relatively weaker solar signals were also found in mid-to-upper troposphere. The spatial pattern of 500 hPa geopotential anomalies resembles a negative Scandinavia teleconnection pattern, and the 200 hPa subtropical jet is weakened, while zonal wind at high latitudes is enhanced due to strong solar activity. The anomalous zonal circulations can be attributed to the “top-down” mechanism. During high solar activity winters, an enhanced stratospheric zonal wind anomaly propagates downward, causing zonal wind anomalies in the troposphere. However, the “bottom-up” mechanisms may provide more reasonable explanations of the distinct solar influences on Eurasian climate. Solar-induced strong warm advection in lower atmosphere tends to increase SAT but decrease SLP, resulting in enhanced solar influences over northern Eurasia. Meanwhile, change in the land-ocean thermal contrast (LOTC) could also amplify the circulation anomaly. Inhomogeneous surface heating caused by anomalous solar activity modifies LOTC, which probably enhances the solar-induced circulation patterns. Such a positive feedback may potentially strengthen the solar influences.