Shanmugam Muruganandan
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shanmugam Muruganandan.
Journal of Biological Chemistry | 2007
Kerry B. Goralski; Tanya C. McCarthy; Elyisha A. Hanniman; Brian A. Zabel; Eugene C. Butcher; Sebastian D. Parlee; Shanmugam Muruganandan; Christopher J. Sinal
Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension. Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; e.g. adiponectin, leptin, and tumor necrosis factor α) and local inflammatory responses are contributing factors. Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity. Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes. Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells. Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes. We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism.
Cellular and Molecular Life Sciences | 2009
Shanmugam Muruganandan; Alexandra Roman; Christopher J. Sinal
Abstract.Bone marrow mesenchymal stem cells (MSCs) are multipotent cells, which among other cell lineages, give rise to adipocytes and osteoblasts. Within the bone marrow, the differentiation of MSCs into adipocytes or osteoblasts is competitively balanced; mechanisms that promote one cell fate actively suppress mechanisms that induce the alternative lineage. This occurs through the cross talk between complex signaling pathways including those derived from bone morphogenic proteins (BMPs), winglesstype MMTV integration site (Wnt) proteins, hedgehogs, delta/jagged proteins, fibroblastic growth factors (FGF), insulin, insulin-like growth factors (IGF), and transcriptional regulators of adipocyte and osteoblast differentiation including peroxisome proliferator-activated receptor-γ (PPARγ) and runt-related transcription factor 2 (Runx2). Here, we discuss the molecular regulation of bone marrow adipogenesis with emphasis on signals that interact with osteoblastogenic pathways and highlight the possible therapeutic implications of these interactions.
Endocrinology | 2010
Sebastian D. Parlee; Matthew C. Ernst; Shanmugam Muruganandan; Christopher J. Sinal; Kerry B. Goralski
Chemerin is an adipokine with important regulatory roles in adipogenesis. In humans, serum total chemerin (i.e. prochemerin plus chemerin) levels are positively associated with body mass index and metabolic syndrome. However, the mechanisms that increase serum chemerin concentration are unknown. We hypothesized that chronic low-grade inflammation that occurs in obesity promotes chemerin production by adipocytes. Consistent with this, TNFalpha treatment of 3T3-L1 adipocytes increased bioactive chemerin levels in the cell media as detected using a CMKLR1 cell-based bioassay. This effect was blocked by the protein synthesis inhibitor cycloheximide and protein secretion inhibitor brefeldin A, indicating that TNFalpha may enhance prochemerin synthesis and secretion from adipocytes. In vivo, TNFalpha produced a time-dependent increase in serum total chemerin and bioactive chemerin. Bioactive chemerin was produced by primary mouse adipocytes and hepatocytes. Only primary adipocyte-derived chemerin was responsive to TNFalpha regulation implicating adipocytes as a potential source of elevated serum chemerin after TNFalpha exposure in vivo. In lean mice, serum total chemerin levels oscillated with peak levels occurring during daytime and trough levels at night. Comparatively, leptin- and leptin receptor-deficient obese mice, which have elevated adipose tissue expression of TNFalpha, displayed elevated serum total chemerin levels with an enhanced oscillatory pattern. In summary, our novel results identified TNFalpha as a positive regulator of adipocyte-derived chemerin. We corroborate the finding of elevated chemerin in obese humans by identifying elevated serum levels of total chemerin in two obese mouse models with a corresponding alteration in the rhythmic pattern of serum chemerin levels.
Journal of Bone and Mineral Research | 2010
Shanmugam Muruganandan; Alexandra Roman; Christopher J. Sinal
Maintenance of healthy bone mass requires a well‐coordinated balance between the ongoing processes of bone formation and bone resorption. Bone‐forming osteoblasts derive from resident adult stem cells within bone marrow called bone marrow stromal cells (BMSCs). These BMSCs are multipotent and also can give rise to adipocytes, which do not contribute directly to bone formation but may influence bone remodeling through the release of bioactive signaling molecules. Chemerin is a novel adipocyte‐derived signaling molecule that promotes adipocyte differentiation. In this study we examined the role of chemerin and the cognate receptors CMKLR1 and CCRL2 as determinants of osteoblast and adipocyte differentiation of the preosteoblast 7F2 cell line and of primary BMSCs. Expression and secretion of chemerin increased dramatically with adipocyte differentiation of these cells. Functionally, knockdown of chemerin or CMKLR1 expression using RNA interference abrogated adipocyte differentiation, clonal expansion, and basal proliferation of BMSCs. In contrast, knockdown of either gene was associated with increased osteoblast marker gene expression and mineralization in response to osteoblastogenic stimuli. Forced expression of the adipogenic transcription factor peroxisome proliferator‐activated receptor γ (PPARγ) induced chemerin expression and partially rescued the loss of adipogenesis associated with chemerin or CMKLR1 knockdown in BMSCs. Taken together, these data support a novel role for chemerin/CMKLR1 signaling in regulating adipogenesis and osteoblastogenesis of bone marrow–derived precursor cells. These data reveal a potential role for this signaling pathway as a modulator of bone mass.
Journal of Biological Chemistry | 2011
Shanmugam Muruganandan; Sebastian D. Parlee; Jillian L. Rourke; Matthew C. Ernst; Kerry B. Goralski; Christopher J. Sinal
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G2/M cyclins (cyclin A2/B2) but not the G1/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.
Journal of Endocrinology | 2014
Jillian L. Rourke; Shanmugam Muruganandan; Helen J. Dranse; Nichole M. McMullen; Christopher J. Sinal
Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murine Gpr1 mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) and Cmklr1, Gpr1 expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygous Gpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lacking Gpr1 exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects of Gpr1 deficiency on adiposity, energy balance, and glucose homeostasis in vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.
Iubmb Life | 2014
Shanmugam Muruganandan; Christopher J. Sinal
Throughout life, bone is constantly remodeled through the complementary processes of bone resorption and bone formation. Highly coordinated regulation of these activities is essential for maintaining consistent bone quality and quantity. Normally, the development and function of bone‐forming (osteoblast) and bone‐resorbing (osteoclast) cells are tightly regulated by signaling molecules secreted by these two cell types. Within the bone marrow microenvironment, osteoblasts arise from mesenchymal stem cells (MSCs), which are in close contact with the hematopoietic stem cell (HSC) precursors that differentiate into mature osteoclasts. Signaling molecules secreted by osteoblasts (e.g., receptor activator of nuclear factor kappa B ligand and osteoprotegerin) and osteoclasts (e.g., bone morphogenetic protein 6, wingless‐type MMTV integration site family member 10B, sphingosine‐1‐phosphate, and ephrin‐B2) play a key role in bone remodeling by guiding the differentiation, localization, and function of bone cells. In addition to osteoblasts, bone marrow MSCs can also differentiate into adipocytes that affect bone remodeling by competitively suppressing intracellular osteogenic signals, including runt‐related transcription factor 2, osterix, and beta‐catenin, while simultaneously promoting the secretion of adipogenic signaling molecules such as leptin, adiponectin, chemerin, omentin‐1, resistin, and visfatin. Secreted adipogenic factors have also been shown to affect the osteoclastogenic differentiation of HSCs. Herein, we discuss the impact of bone marrow adipocytes on the coupling of osteoblast and osteoclast differentiation, and the relevance to bone‐loss disorders such as osteoporosis.
American Journal of Physiology-cell Physiology | 2012
Mark E. Issa; Shanmugam Muruganandan; Matthew C. Ernst; Sebastian D. Parlee; Brian A. Zabel; Eugene C. Butcher; Christopher J. Sinal; Kerry B. Goralski
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.
Stem Cells | 2013
Shanmugam Muruganandan; Helen J. Dranse; Jillian L. Rourke; Nichole M. McMullen; Christopher J. Sinal
Bone is a dynamic tissue that is continuously remodeled through the action of formative osteoblasts and resorptive osteoclasts. Chemerin is a secreted protein that activates chemokine‐like receptor 1 (CMKLR1), a G protein‐coupled receptor expressed by various cell types including adipocytes, osteoblasts, mesenchymal stem cells (MSCs), and macrophages. Previously, we identified chemerin as a regulator of adipocyte and osteoblast differentiation of MSCs. Herein we examined the role of chemerin in Lin− Sca1+ c‐kit+ CD34+ hematopoietic stem cell (HSC) osteoclastogenesis. We found that HSCs expressed both chemerin and CMKLR1 mRNA and secreted chemerin protein into the extracellular media. Neutralization of chemerin with a blocking antibody beginning prior to inducing osteoclast differentiation resulted in a near complete loss of osteoclastogenesis as evidenced by reduced marker gene expression and matrix resorption. This effect was conserved in an independent model of RAW264.7 cell osteoclastogenesis. Reintroduction of chemerin by reversal of neutralization rescued osteoclast differentiation indicating that chemerin signaling is essential to permit HSC differentiation into osteoclasts but following blockade the cells maintained the potential to differentiate into osteoclasts. Mechanistically, neutralization of chemerin blunted the early receptor activator of nuclear factor‐kappa B ligand induction of nuclear factor of activated T‐cells 2 (NFAT2), Fos, Itgb3, and Src associated with preosteoclast formation. Consistent with a central role for NFAT2, induction or activation of NFAT2 by forced expression or stimulation of intracellular calcium release rescued the impairment of HSC osteoclastogenesis caused by chemerin neutralization. Taken together, these data support a novel autocrine/paracrine role for chemerin in regulating osteoclast differentiation of HSCs through modulating intracellular calcium and NFAT2 expression/activation. Stem Cells 2013;31:2172–2182
PLOS ONE | 2012
Sebastian D. Parlee; Jenna O. McNeil; Shanmugam Muruganandan; Christopher J. Sinal; Kerry B. Goralski
Chemerin is a leukocyte chemoattractant and adipokine with important immune and metabolic roles. Chemerin, secreted in an inactive form prochemerin, undergoes C-terminal proteolytic cleavage to generate active chemerin, a ligand for the chemokine-like receptor-1 (CMKLR1). We previously identified that adipocytes secrete and activate chemerin. Following treatment with the obesity-associated inflammatory mediator TNFα, unknown adipocyte mechanisms are altered resulting in an increased ratio of active to total chemerin production. Based on these findings we hypothesized adipocytes produce proteases capable of modifying chemerin and its ability to activate CMKRL1. 3T3-L1 adipocytes expressed mRNA of immunocyte and fibrinolytic proteases known to activate chemerin in vitro. Following treatment with a general protease inhibitor cocktail (PIC), the TNFα-stimulated increase in apparent active chemerin concentration in adipocyte media was amplified 10-fold, as measured by CMKLR1 activation. When the components of the PIC were investigated individually, aprotinin, a serine protease inhibitor, blocked 90% of the TNFα-associated increase in active chemerin. The serine proteases, elastase and tryptase were elevated in adipocyte media following treatment with TNFα and their targeted neutralization recapitulated the aprotinin-mediated effects. In contrast, bestatin, an aminopeptidase inhibitor, further elevated the TNFα-associated increase in active chemerin. Our results support that adipocytes regulate chemerin by serine protease-mediated activation pathways and aminopeptidase deactivation pathways. Following TNFα treatment, increased elastase and tryptase modify the balance between activation and deactivation, elevating active chemerin concentration in adipocyte media and subsequent CMKLR1 activation.