Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon Bainbridge is active.

Publication


Featured researches published by Shannon Bainbridge.


Hypertension | 2012

Endothelial Nitric Oxide Synthase Deficiency Reduces Uterine Blood Flow, Spiral Artery Elongation, and Placental Oxygenation in Pregnant Mice

Shathiyah Kulandavelu; Kathie J. Whiteley; Dawei Qu; Junwu Mu; Shannon Bainbridge; S. Lee Adamson

Preeclampsia is associated with impaired uteroplacental adaptations during pregnancy and abnormalities in the endothelial NO synthase (eNOS)-NO pathway, but whether eNOS deficiency plays a causal role is unknown. Thus, the objective of the current study was to determine the role of eNOS in the mother and/or conceptus in uteroplacental changes during pregnancy using eNOS knockout mice. We quantified uterine artery blood flow using microultrasound, visualized the uteroplacental vasculature using vascular corrosion casts, and used pimonidazole and hypoxia-inducible factor 1&agr; immunohistochemistry as markers of hypoxia in the placentas of eNOS knockout mice versus the background strain, C57Bl/6J (wild type). We found that increases in uteroplacental blood flow, uterine artery diameter, and spiral artery length were reduced, and markers of placental hypoxia in the junctional zone were elevated in late gestation in eNOS knockout mice. Both maternal and conceptus genotypes contributed to changes in uterine artery diameter and flow. Despite placental hypoxia, placental soluble fms-like tyrosine kinase 1 and tumor necrosis factor-&agr; mRNA, and in maternal plasma, soluble fms-like tyrosine kinase 1 were not elevated in eNOS knockout mice. Thus, our results show that both eNOS in the mother and the conceptus contribute to uteroplacental vascular changes and increased uterine arterial blood flow in normal pregnancy.


Hypertension | 2013

Endothelial NO Synthase Augments Fetoplacental Blood Flow, Placental Vascularization, and Fetal Growth in Mice

Shathiyah Kulandavelu; Kathie J. Whiteley; Shannon Bainbridge; Dawei Qu; S. Lee Adamson

It is not known whether eNOS deficiency in the mother or the conceptus (ie, placenta and fetus) causes fetal growth restriction in mice lacking the endothelial NO synthase gene (eNOS knockout [KO]). We hypothesized that eNOS sustains fetal growth by maintaining low fetoplacental vascular tone and promoting fetoplacental vascularity and that this is a conceptus effect and is independent of maternal genotype. We found that eNOS deficiency blunted fetal growth, and blunted the normal increase in umbilical blood flow and umbilical venous diameter and the decrease in umbilical arterial Resistance Index in late gestation (14.5–17.5 days) in eNOS KO relative to C57Bl/6J controls. On day 17.5, fetoplacental capillary lobule length and capillary density in vascular corrosion casts were reduced in eNOS KO placentas. Reduced vascularization may be a result of decreased vascular endothelial growth factor mRNA and protein expression in eNOS KO placentas at this stage. These factors, combined with significant anemia found in eNOS KO fetuses, would be anticipated to reduce fetal oxygen delivery and contribute to the fetal tissue hypoxia that was detected in the heart, lung, kidney, and liver by immunohistochemistry using pimonidazole. Although maternal eNOS deficiency impairs uteroplacental adaptations to pregnancy, maternal genotype was not a significant factor affecting growth in heterozygous conceptuses. This indicates that fetal growth restriction was primarily caused by conceptus eNOS deficiency. In mice, placental hemodynamic and vascular changes with gestation and growth restriction showed strong parallels with human pregnancy. Thus, the eNOS KO model could provide insights into the pathogenesis of human intrauterine growth restriction.


American Journal of Obstetrics and Gynecology | 2016

Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: a systematic review and metaanalysis

Pourya Masoudian; Ahmed Nasr; Joseph de Nanassy; Karen Fung-Kee-Fung; Shannon Bainbridge; Dina El Demellawy

The purpose of this study was to determine whether pregnancies that were achieved via oocyte donation, compared with pregnancies achieved via other assisted reproductive technology methods or natural conception, demonstrate increased risk of preeclampsia or gestational hypertension. Comparative studies of pregnancies that were achieved with oocyte donation vs other methods of assisted reproductive technology or natural conception with preeclampsia or gestational hypertension were included as 1 of the measured outcomes. Abstracts and unpublished studies were excluded. Two reviewers independently selected studies, which were assessed for quality with the use of methodological index for non-randomized studies, and extracted the data. Statistical analysis was conducted. Of the 523 studies that were reviewed initially, 19 comparative studies met the predefined inclusion and exclusion criteria and were included in the metaanalysis, which allowed for analysis of a total of 86,515 pregnancies. Our pooled data demonstrated that the risk of preeclampsia is higher in oocyte-donation pregnancies compared with other methods of assisted reproductive technology (odds ratio, 2.54; 95% confidence interval, 1.98-3.24; P < .0001) or natural conception (odds ratio, 4.34; 95% confidence interval, 3.10-6.06; P < .0001). The risk of gestational hypertension was also increased significantly in oocyte donation pregnancies in comparison with other methods of assisted reproductive technology (odds ratio, 3.00; 95% confidence interval, 2.44-3.70; P < .0001) or natural conception (odds ratio, 7.94; 95% confidence interval, 1.73-36.36; P = .008). Subgroup analysis that was conducted for singleton and multiple gestations demonstrated a similar risk for preeclampsia and gestational hypertension in both singleton and multiple gestations. This metaanalysis provides further evidence that supports that egg donation increases the risk of preeclampsia and gestational hypertension compared with other assisted reproductive technology methods or natural conception.


Hypertension | 2016

Unsupervised Placental Gene Expression Profiling Identifies Clinically Relevant Subclasses of Human Preeclampsia

Katherine Leavey; Samantha J. Benton; David Grynspan; John Kingdom; Shannon Bainbridge; Brian J. Cox

Preeclampsia (PE) is a complex, hypertensive disorder of pregnancy, demonstrating considerable variability in maternal symptoms and fetal outcomes. Unfortunately, prior research has not accounted for this variability, resulting in a lack of robust biomarkers and effective treatments for PE. Here, we created a large (N=330) clinically relevant human placental microarray data set, consisting of 7 previously published studies and 157 highly annotated new samples from a single BioBank. Applying unsupervised clustering to this combined data set identified 3 clinically significant probable etiologies of PE: “maternal”, with healthy placentas and term deliveries; “canonical”, exhibiting expected clinical, ontological, and histopathologic features of PE; and “immunologic” with severe fetal growth restriction and evidence of maternal antifetal rejection. Moreover, these groups could be distinguished using a small quantitative polymerase chain reaction panel and demonstrated varying influence of maternal factors on PE development. An additional subclass of PE placentas was also revealed to form because of chromosomal abnormalities in these samples, supported by array-based comparative genomic hybridization analysis. Overall, our findings represent a new paradigm in our understanding of the origins and maternal–placental contributions to the pathology of PE. The study of PE represents a unique opportunity to access human tissue associated with a complex hypertensive disorder, and our novel approach could be applied to other hypertensive and heterogeneous human diseases.


Hypertension | 2012

Effects of Reduced Gcm1 Expression on Trophoblast Morphology, Fetoplacental Vascularity, and Pregnancy Outcomes in Mice

Shannon Bainbridge; Abhijeet Minhas; Kathie J. Whiteley; Dawei Qu; John G. Sled; John Kingdom; S. Lee Adamson

Preeclampsia is a life-threatening disorder characterized by maternal gestational hypertension and proteinuria that results from placental dysfunction. Placental abnormalities include abnormal syncytiotrophoblast and a 50% reduction in placental expression of the transcription factor Gcm1. In mice, homozygous deletion of Gcm1 prevents syncytiotrophoblast differentiation and is embryonic lethal. We used heterozygous Gcm1 mutants (Gcm1 +/−) to test the hypothesis that hypomorphic expression of placental Gcm1 causes defective syncytiotrophoblast differentiation and maternal and placental phenotypes that resemble preeclampsia. We mated wild-type female mice with Gcm1 +/− fathers to obtain wild-type mothers carrying ≈50% Gcm1 +/− conceptuses. Gcm1 +/− placentas had syncytiotrophoblast abnormalities including reduced gene expression of Gcm1-regulated SynB, elevated expression of sFlt1, a thickened interhemal membrane separating maternal and fetal circulations, and electron microscopic evidence in syncytiotrophoblast of necrosis and impaired maternal-fetal transfer. Fetoplacental vascularity was quantified by histomorphometry and microcomputed tomography imaging. In Gcm1 +/−, it was ≈30% greater than wild-type littermates, whereas placental vascular endothelial growth factor A (Vegfa) expression and fetal and placental weights did not differ. Wild-type mothers carrying Gcm1 +/− conceptuses developed late gestational hypertension (118±2 versus 109.6±0.7 mm Hg in controls; P<0.05). We next correlated fetoplacental vascularity with placental Gcm1 expression in human control and pathological pregnancies and found that, as in mice, fetoplacental vascularity increased when GCM1 protein expression decreased (R 2=−0.45; P<0.05). These results support a role for reduced placental Gcm1 expression as a causative factor in defective syncytiotrophoblast differentiation and maternal and placental phenotypes in preeclampsia in humans.


PLOS ONE | 2015

Large Scale Aggregate Microarray Analysis Reveals Three Distinct Molecular Subclasses of Human Preeclampsia

Katherine Leavey; Shannon Bainbridge; Brian J. Cox

Background Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting 3–5% of all pregnancies. To date, PE has no cure, early detection markers, or effective treatments short of the removal of what is thought to be the causative organ, the placenta, which may necessitate a preterm delivery. Additionally, numerous small placental microarray studies attempting to identify “PE-specific” genes have yielded inconsistent results. We therefore hypothesize that preeclampsia is a multifactorial disease encompassing several pathology subclasses, and that large cohort placental gene expression analysis will reveal these groups. Results To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 microarray data sets across multiple platforms in order to generate a large data set of 173 patient samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples revealed three distinct molecular subclasses of PE. This included a “canonical” PE subclass demonstrating elevated expression of known PE markers and genes associated with poor oxygenation and increased secretion, as well as two other subclasses potentially representing a poor maternal response to pregnancy and an immunological presentation of preeclampsia. Conclusion Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional avenues for future investigation. Hopefully, our subclassification of preeclampsia based on molecular diversity will finally lead to the development of robust diagnostics and patient-based treatments for this disorder.


The Journal of Clinical Endocrinology and Metabolism | 2012

Significance of IGFBP-4 in the Development of Fetal Growth Restriction

Qing Qiu; Michael Bell; Xiaoyin Lu; Xiaojuan Yan; Marc A. Rodger; Mark Walker; Shi-Wu Wen; Shannon Bainbridge; Hongmei Wang; Andrée Gruslin

BACKGROUND Fetal growth restriction (FGR) is a leading cause of perinatal mortality and morbidity. Animal studies suggest dysregulation of IGF-binding protein (IGFBP)-4 is significant in the development of FGR, although human data are lacking. We postulated that IGFBP-4 is expressed at the maternal fetal interface and plays a role in regulating IGF bioavailability. Thus, maternal serum levels of IGFBP-4 may be associated with complications of abnormal placental growth and development including FGR. METHODS Circulating levels of IGFBP-4 and its protease, pregnancy-associated plasma protein-A (PAPP-A), were examined in healthy pregnancies. Their expression in villi and bed as possible sources of the circulating products were examined by immunohistochemistry. From the large Ottawa and Kingston (OaK) Birth Cohort, a nested case-control study was conducted to examine circulating levels of IGBP-4, PAPP-A, IGF-I, and IGF-II by Western blot in early gestation in 36 women who went on to develop FGR and 36 controls having normal-weight babies. RESULTS IGFBP-4 was elevated in early pregnancy compared with nonpregnant women and women in later pregnancy, consistent with the presence of abundant extravillous trophoblasts and decidual cells that highly expressed IGFBP-4. High expression of PAPP-A was observed in extravillous trophoblasts and decidual cells in early pregnancy but hardly detectable in the circulation at this time, suggesting maternal circulating PAPP-A originates more likely from syncytiotrophoblasts. Increased IGFBP-4 in the maternal circulation in early pregnancy was associated with the development of FGR [0.48 (0.28-0.74) in control vs. 1.22 (0.66-1.65) in FGR; odds ratio = 22 (95% confidence interval = 2.7-181)]. No difference was observed in circulating PAPP-A, IGF-I and IGF-II in the FGR vs. control group. CONCLUSION Our findings support the role of IGFBP-4 in regulating IGF bioavailability and provide new clues for the prevention and treatment of FGR, raising the possibility of clinical use of IGFBP-4 as an early biomarker for this condition.


Nutrition Reviews | 2018

A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes

Meghan McGee; Shannon Bainbridge; Bénédicte Fontaine-Bisson

The fetal origins of health and disease framework has identified extremes in fetal growth and birth weight as factors associated with the lifelong generation of chronic diseases such as obesity, diabetes, cardiovascular disease, and hypertension. Maternal nutrition plays a critical role in fetal and placental development, in part by providing the methyl groups required to establish the fetuss genome structure and function, notably through DNA methylation. The goal of this narrative review is to describe the role of maternal dietary methyl donor (methionine, folate, and choline) and cofactor (zinc and vitamins B2, B6, and B12) intake in one-carbon metabolism and DNA methylation in the fetus and placenta, as well as their impacts on fetal growth and lifelong health outcomes, with specific examples in animals and humans. Based on the available evidence, it is concluded that intake of different amounts of dietary methyl donors and cofactors during pregnancy may alter fetal growth and development, thus establishing a major link between early environmental exposure and disease development in the offspring later in life.


Placenta | 2017

Andrée Gruslin award lecture: Metabolomics as an important modality to better understand preeclampsia

Samantha J. Benton; Christina Ly; S. Vukovic; Shannon Bainbridge

Preeclampsia (PE) is a complex disorder that affects 3-5% of all pregnancies and is a leading cause of maternal and fetal morbidity and mortality. To date, the heterogeneity of clinical presentation, disease severity and outcomes have limited significant advances in early prediction, diagnosis, and therapeutic intervention of PE. The rapidly expanding field of metabolomics, which has the capacity to quantitatively detect low molecular weight compounds (metabolites) in tissue and biological fluids, shows tremendous promise in gaining a better understanding of PE. This review will discuss this emerging field and its contribution to recent advances in the understanding of PE pathophysiology, and identification of early predictive metabolic biomarkers for this complex disorder.


The Guide to Investigation of Mouse Pregnancy | 2014

Layer-Enriched Tissue Dissection of the Mouse Placenta in Late Gestation

Dawei Qu; Angela McDonald; Kathie J. Whiteley; Shannon Bainbridge; S. Lee Adamson

Chapter Summary This protocol describes a dissection procedure for collecting layer-enriched tissue samples from the mouse placenta in late gestation. Sample enrichment for decidua, spongiotrophoblast, labyrinth, and chorionic plate is shown using histology and mRNA expression of layer-specific markers. Sample enrichment can be used to aid quantitative detection of layer-specific changes in variables such as mRNA and protein levels.

Collaboration


Dive into the Shannon Bainbridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha J. Benton

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David Grynspan

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha L. Wilson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wendy P. Robinson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge