Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon Jones is active.

Publication


Featured researches published by Shannon Jones.


The Journal of Experimental Biology | 2014

Clap and fling mechanism with interacting porous wings in tiny insect flight

Arvind Santhanakrishnan; Alice Robinson; Shannon Jones; Audrey Ann Low; Sneha Gadi; Tyson L. Hedrick; Laura A. Miller

The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a ‘clap and fling’ of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings.


The Journal of Experimental Biology | 2012

Reconfiguration and the reduction of vortex-induced vibrations in broad leaves.

Laura A. Miller; Arvind Santhanakrishnan; Shannon Jones; Christina Hamlet; Keith Mertens; Luoding Zhu

SUMMARY Flexible plants, fungi and sessile animals reconfigure in wind and water to reduce the drag acting upon them. In strong winds and flood waters, for example, leaves roll up into cone shapes that reduce drag compared with rigid objects of similar surface area. Less understood is how a leaf attached to a flexible leaf stalk will roll up stably in an unsteady flow. Previous mathematical and physical models have only considered the case of a flexible sheet attached to a rigid tether in steady flow. In this paper, the dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia and the wild violet Viola papilionacea are described using particle image velocimetry. The flows around the leaves are compared with those of simplified physical and numerical models of flexible sheets attached to both rigid and flexible beams. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In the physical model, a similar recirculation zone is observed within sheets constructed to roll up into cones with both rigid and flexible tethers. Numerical simulations and experiments show that flexible rectangular sheets that reconfigure into U-shapes, however, are less stable when attached to flexible tethers. In these cases, larger forces and oscillations due to strong vortex shedding are measured. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.


PLOS ONE | 2014

Effect of Broccoli Sprouts on Nasal Response to Live Attenuated Influenza Virus in Smokers: A Randomized, Double-Blind Study

Terry L. Noah; Hongtao Zhang; Haibo Zhou; Ellen Glista-Baker; Loretta Müller; Rebecca N. Bauer; Megan Meyer; Paula C. Murphy; Shannon Jones; Blanche Letang; Carole Robinette; Ilona Jaspers

Background Smokers have increased susceptibility and altered innate host defense responses to influenza virus infection. Broccoli sprouts are a source of the Nrf2 activating agentsulforaphane, and short term ingestion of broccoli sprout homogenates (BSH) has been shown to reduce nasal inflammatory responses to oxidant pollutants. Objectives Assess the effects of BSH on nasal cytokines, virus replication, and Nrf2-dependent enzyme expression in smokers and nonsmokers. Methods We conducted a randomized, double-blind, placebo-controlled trial comparing the effects of BSH on serially sampled nasal lavage fluid (NLF) cytokines, viral sequence quantity, and Nrf2-dependent enzyme expression in NLF cells and biopsied epithelium. Healthy young adult smokers and nonsmokers ingested BSH or placebo (alfalfa sprout homogenate) for 4 days, designated Days -1, 0, 1, 2. On Day 0 they received standard vaccine dose of live attenuated influenza virus (LAIV) intranasally. Nasal lavage fluids and nasal biopsies were collected serially to assess response to LAIV. Results In area under curve analyses, post-LAIV IL-6 responses (P = 0.03) and influenza sequences (P = 0.01) were significantly reduced in NLF from BSH-treated smokers, whileNAD(P)H: quinoneoxidoreductasein NLF cells was significantly increased. In nonsmokers, a similar trend for reduction in virus quantity with BSH did not reach statistical significance. Conclusions In smokers, short term ingestion of broccoli sprout homogenates appears to significantly reduce some virus-induced markers of inflammation, as well as reducing virus quantity. Nutritional antioxidant interventions have promise as a safe, low-cost strategy for reducing influenza risk among smokers and other at risk populations. Trial Registration ClinicalTrials.gov NCT01269723


Biochemical and Biophysical Research Communications | 2011

Regulation of ENT1 expression and ENT1-dependent nucleoside transport by c-Jun N-terminal kinase

Andrea V. Leisewitz; Eric I. Zimmerman; Min Huang; Shannon Jones; Jing Yang; Lee M. Graves

Equilibrative nucleoside transporters (ENTs) are facilitative transporters broadly selective for pyrimidine and purine nucleosides and are essential for the modulation of nucleoside concentration and nucleoside analog availability. Resistance to nucleoside-derived drugs strongly correlates with a deficiency of ENT1 expression in several tumor cells. Thus, it is crucial to understand the mechanisms by which this transporter is modulated. Using a mouse myeloid leukemic cell line as a model, we investigated whether stress-activated kinases regulate ENT1 expression and function. JNK activation, but not p38 MAPK results in rapid loss of mENT1 function, mRNA expression and promoter activity. c-Jun but not the mutant c-Jun Ser63/73Ala, decreased mENT1 promoter activity. Moreover cJun bound to an AP-1 site identified at -1196 of the promoter, suggesting a specific role for this transcription factor in mENT1 regulation. We propose that activation of JNK-cJun pathway negatively regulates mENT1 and suggest that this mechanism might contribute to the development of nucleoside analog-derived drug resistance.


Journal of Immunology | 2012

Autoreactive Preplasma Cells Break Tolerance in the Absence of Regulation by Dendritic Cells and Macrophages

Mileka R. Gilbert; Nikki J. Wagner; Shannon Jones; Amanda B. Wisz; Jose R. Roques; Kristen N. Krum; Sang Ryul Lee; Volker Nickeleit; Chrys Hulbert; James W. Thomas; Stephen B. Gauld; Barbara J. Vilen

The ability to induce Ab responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of TLR4, dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to Ag, but not naive cells, suggesting a means to maintain tolerance during TLR4 stimulation, yet allow immunity. In this study, we identify TNF-α as a third repressive factor, which together with IL-6 and CD40L account for nearly all the repression conferred by DCs and MFs. Similar to IL-6 and sCD40L, TNF-α did not alter B cell proliferation or survival. Instead, it reduced the number of Ab-secreting cells. To address whether the soluble mediators secreted by DCs and MFs functioned in vivo, we generated mice lacking IL-6, CD40L, and TNF-α. Compared to wild-type mice, these mice showed prolonged anti-nuclear Ab responses following TLR4 stimulation. Furthermore, adoptive transfer of autoreactive B cells into chimeric IL-6−/− × CD40L−/− × TNF-α−/− mice showed that preplasma cells secreted autoantibodies independent of germinal center formation or extrafollicular foci. These data indicate that in the absence of genetic predisposition to autoimmunity, loss of endogenous IL-6, CD40L, and TNF-α promotes autoantibody secretion during TLR4 stimulation.


Nucleosides, Nucleotides & Nucleic Acids | 2008

Imatinib-Resistant CML Cells Have Low ENT Activity but Maintain Sensitivity to Gemcitabine

Andrea V. Leisewitz; Eric I. Zimmerman; Shannon Jones; Jing Yang; Lee M. Graves

Philadelphia chromosome-positive chronic myelogenus leukemia (CML) is widely treated with imatinib mesylate (imatinib), a potent inhibitor of the Bcr-Abl tyrosine kinase. However, resistance to this compound remains a concern. Current treatment approaches include combinations of imatinib with nucleoside analogs such as gemcitabine, which requires equilibrative nucleoside transporters (ENTs) for uptake, to overcome this resistance. Here we report that imatinib treatment decreased ENT1-dependent activity and mRNA expression. Although, imatinib-resistant cells showed decreased levels of both ENT1 and ENT2 activity and expression, these cells remained sensitive to gemcitabine, suggesting that nucleoside analogs can be used as adjunctive therapy.


PLOS ONE | 2016

Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

Loretta Müller; Megan Meyer; Rebecca N. Bauer; Haibo Zhou; Hongtao Zhang; Shannon Jones; Carole Robinette; Terry L. Noah; Ilona Jaspers

Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses. Trial Registration: ClinicalTrials.gov NCT01269723


Journal of Immunology | 2012

Receptor Cross-Talk Spatially Restricts p-ERK during TLR4 Stimulation of Autoreactive B Cells

Sang Ryul Lee; Jennifer A. Rutan; Andrew J. Monteith; Shannon Jones; Sun Ah Kang; Kristen N. Krum; Michelle A. Kilmon; Jose R. Roques; Nikki J. Wagner; Stephen H. Clarke; Barbara J. Vilen

To maintain tolerance, autoreactive B cells must regulate signal transduction from the BCR and TLRs. We recently identified that dendritic cells and macrophages regulate autoreactive cells during TLR4 activation by releasing IL-6 and soluble CD40 ligand (sCD40L). These cytokines selectively repress Ab secretion from autoreactive, but not antigenically naive, B cells. How IL-6 and sCD40L repress autoantibody production is unknown. In this work, we show that IL-6 and sCD40L are required for low-affinity/avidity autoreactive B cells to maintain tolerance through a mechanism involving receptor cross-talk between the BCR, TLR4, and the IL-6R or CD40. We show that acute signaling through IL-6R or CD40 integrates with chronic BCR-mediated ERK activation to restrict p-ERK from the nucleus and represses TLR4-induced Blimp-1 and XBP-1 expression. Tolerance is disrupted in 2-12H/MRL/lpr mice where IL-6 and sCD40L fail to spatially restrict p-ERK and fail to repress TLR4-induced Ig secretion. In the case of CD40, acute signaling in B cells from 2-12H/MRL/lpr mice is intact, but the chronic activation of p-ERK emanating from the BCR is attenuated. Re-establishing chronically active ERK through retroviral expression of constitutively active MEK1 restores tolerance upon sCD40L, but not IL-6, stimulation, indicating that regulation by IL-6 requires another signaling effector. These data define the molecular basis for the regulation of low-affinity autoreactive B cells during TLR4 stimulation; they explain how autoreactive but not naive B cells are repressed by IL-6 and sCD40L; and they identify B cell defects in lupus-prone mice that lead to TLR4-induced autoantibody production.


Journal of Immunology | 2016

IgG-Immune Complexes Promote B Cell Memory by Inducing BAFF.

SunAh Kang; Amanda B. Keener; Shannon Jones; Robert J. Benschop; Alfredo Caro-Maldonado; Jeffrey C. Rathmell; Stephen H. Clarke; Glenn K. Matsushima; Jason K. Whitmire; Barbara J. Vilen

Memory B cell responses are vital for protection against infections but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high-affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG-immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice. We found that early secretion of IgG in response to immunization with a T-dependent Ag leads to IC–FcγR interactions that induce dendritic cells to secrete BAFF, which acts at or upstream of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell–derived BAFF, or blocking IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B cells, and secondary Ab responses. BAFF also contributed to the maintenance and/or expansion of the follicular helper T cell population, although it was dispensable for their formation. Thus, early Ab responses contribute to the optimal formation of B cell memory through IgG-ICs and BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses.


Fluids | 2018

Flow Structure and Force Generation on Flapping Wings at Low Reynolds Numbers Relevant to the Flight of Tiny Insects

Arvind Santhanakrishnan; Shannon Jones; William B. Dickson; Martin Y. Peek; Vishwa Kasoju; Michael H. Dickinson; Laura A. Miller

Collaboration


Dive into the Shannon Jones's collaboration.

Top Co-Authors

Avatar

Laura A. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Barbara J. Vilen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Arvind Santhanakrishnan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ilona Jaspers

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrea V. Leisewitz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Carole Robinette

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric I. Zimmerman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Haibo Zhou

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hongtao Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jing Yang

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge