Shannon M. Doyle
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shannon M. Doyle.
Nature Reviews Molecular Cell Biology | 2013
Shannon M. Doyle; Olivier Genest; Sue Wickner
Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimers disease, Parkinsons disease, amyloidosis and prion diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Marika Miot; Michael A. Reidy; Shannon M. Doyle; Joel R. Hoskins; Danielle Johnston; Olivier Genest; Maria-Carmen Vitery; Daniel C. Masison; Sue Wickner
Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Shannon M. Doyle; Joel R. Hoskins; Sue Wickner
ClpB and Hsp104, members of the AAA+ superfamily of proteins, protect cells from the devastating effects of protein inactivation and aggregation that arise after extreme heat stress. They exist as a hexameric ring and contain two nucleotide-binding sites per monomer. ClpB and Hsp104 are able to dissolve protein aggregates in conjunction with the DnaK/Hsp70 chaperone system, although the roles of the individual chaperones in disaggregation are not well understood. In the absence of the DnaK/Hsp70 system, ClpB and Hsp104 alone are able to perform protein remodeling when their ATPase activity is asymmetrically slowed either by providing a mixture of ATP and ATPγS, a nonphysiological and slowly hydrolyzed ATP analog, or by inactivating one of the two nucleotide-binding domains by mutation. To gain insight into the roles of ClpB and the DnaK system in protein remodeling, we tested whether there was a further stimulation by the DnaK chaperone system under conditions that elicited remodeling activity by ClpB alone. Our results demonstrate that ClpB and the DnaK system act synergistically to remodel proteins and dissolve aggregates. The results further show that ATP is required and that both nucleotide-binding sites of ClpB must be able to hydrolyze ATP to permit functional collaboration between ClpB and the DnaK system.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Olivier Genest; Joel R. Hoskins; Jodi L. Camberg; Shannon M. Doyle; Sue Wickner
Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate hundreds of client proteins with the assistance of cochaperones. In Escherichia coli, the activity of the Hsp90 homolog, HtpG, has remained elusive. To explore the mechanism of action of E. coli Hsp90, we used in vitro protein reactivation assays. We found that E. coli Hsp90 promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic Hsp70 chaperone system, known as the DnaK system. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase reactivation demonstrating the importance of the ATP-dependent chaperone activity of E. coli Hsp90 during client protein remodeling. Reactivation also depends upon the ATP-dependent chaperone activity of the DnaK system. Our results suggest that the DnaK system acts first on the client protein, and then E. coli Hsp90 and the DnaK system collaborate synergistically to complete remodeling of the client protein. Results indicate that E. coli Hsp90 and DnaK interact in vivo and in vitro, providing additional evidence to suggest that E. coli Hsp90 and the DnaK system function together.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Joel R. Hoskins; Shannon M. Doyle; Sue Wickner
ClpB and Hsp104 are members of the AAA+ (ATPases associated with various cellular activities) family of proteins and are molecular machines involved in thermotolerance. They are hexameric proteins containing 12 ATP binding sites with two sites per protomer. ClpB and Hsp104 possess some innate protein remodeling activities; however, they require the collaboration of the DnaK/Hsp70 chaperone system to disaggregate and reactivate insoluble aggregated proteins. We investigated the mechanism by which ClpB couples ATP utilization to protein remodeling with and without the DnaK system. When wild-type ClpB, which is unable to remodel proteins alone in the presence of ATP, was mixed with a ClpB mutant that is unable to hydrolyze ATP, the heterohexamers surprisingly gained protein remodeling activity. Optimal protein remodeling by the heterohexamers in the absence of the DnaK system required approximately three active and three inactive protomers. In addition, the location of the active and inactive ATP binding sites in the hexamer was not important. The results suggest that in the absence of the DnaK system, ClpB acts by a probabilistic mechanism. However, when we measured protein disaggregation by ClpB heterohexamers in conjunction with the DnaK system, incorporation of a single inactive ClpB subunit blocked activity, supporting a sequential mechanism of ATP utilization. Taken together, the results suggest that the mechanism of ATP utilization by ClpB is adaptable and can vary depending on the specific substrate and the presence of the DnaK system.
Nature Structural & Molecular Biology | 2007
Shannon M. Doyle; James Shorter; Michal Zolkiewski; Joel R. Hoskins; Susan Lindquist; Sue Wickner
Proceedings of the National Academy of Sciences of the United States of America | 2007
Shannon M. Doyle; Joel R. Hoskins; Sue Wickner
Archive | 2016
Shannon M. Doyle; Andrea N. Kravats; Sue Wickner
The FASEB Journal | 2007
Shannon M. Doyle; Joel R. Hoskins; Sue Wickner
The FASEB Journal | 2007
Jonathan J. Miller; Shannon M. Doyle; Joel R. Hoskins; Sue Wickner