Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon Saszik is active.

Publication


Featured researches published by Shannon Saszik.


The Journal of Physiology | 2002

The scotopic threshold response of the dark-adapted electroretinogram of the mouse

Shannon Saszik; John G. Robson; Laura J. Frishman

The most sensitive response in the dark‐adapted electroretinogram (ERG), the scotopic threshold response (STR) which originates from the proximal retina, has been identified in several mammals including humans, but previously not in the mouse. The current study established the presence and assessed the nature of the mouse STR. ERGs were recorded from adult wild‐type C57/BL6 mice anaesthetized with ketamine (70 mg kg−1) and xylazine (7 mg kg−1). Recordings were between DTL fibres placed under contact lenses on the two eyes. Monocular test stimuli were brief flashes (λmax 462 nm; ‐6.1 to +1.8 log scotopic Troland seconds(sc td s)) under fully dark‐adapted conditions and in the presence of steady adapting backgrounds (‐3.2 to ‐1.7 log sc td). For the weakest test stimuli, ERGs consisted of a slow negative potential maximal ≈200 ms after the flash, with a small positive potential preceding it. The negative wave resembled the STR of other species. As intensity was increased, the negative potential saturated but the positive potential (maximal ≈110 ms) continued to grow as the b‐wave. For stimuli that saturated the b‐wave, the a‐wave emerged. For stimulus strengths up to those at which the a‐wave emerged, ERG amplitudes measured at fixed times after the flash (110 and 200 ms) were fitted with a model assuming an initially linear rise of response amplitude with intensity, followed by saturation of five components of declining sensitivity: a negative STR (nSTR), a positive STR (pSTR), a positive scotopic response (pSR), PII (the bipolar cell component) and PIII (the photoreceptor component). The nSTR and pSTR were approximately 3 times more sensitive than the pSR, which was approximately 7 times more sensitive than PII. The sensitive positive components dominated the b‐wave up to > 5 % of its saturated amplitude. Pharmacological agents that suppress proximal retinal activity (e.g. GABA) minimized the pSTR, nSTR and pSR, essentially isolating PII which rose linearly with intensity before showing hyperbolic saturation. The nSTR, pSTR and pSR were desensitized by weaker backgrounds than those desensitizing PII. In conclusion, ERG components of proximal retinal origin that are more sensitive to test flashes and adapting backgrounds than PII provide the ‘threshold’ negative and positive (b‐wave) responses of the mouse dark‐adapted ERG. These results support the use of the mouse ERG in studies of proximal retinal function.


The Journal of Physiology | 2003

Rod and cone contributions to the a‐wave of the electroretinogram of the macaque

John G. Robson; Shannon Saszik; Jameel Ahmed; Laura J. Frishman

The electroretinogram (ERG) of anaesthetised dark‐adapted macaque monkeys was recorded in response to ganzfeld stimulation and rod‐ and cone‐driven receptoral and postreceptoral components were separated and modelled. The test stimuli were brief (< 4.1 ms) flashes. The cone‐driven component was isolated by delivering the stimulus shortly after a rod‐saturating background had been extinguished. The rod‐driven component was derived by subtracting the cone‐driven component from the mixed rod–cone ERG. The initial part of the leading edge of the rod‐driven a‐wave scaled linearly with stimulus energy when energy was sufficiently low and, for times less than about 12 ms after the stimulus, it was well described by a linear model incorporating a distributed delay and three cascaded low‐pass filter elements. Addition of a simple static saturating non‐linearity with a characteristic intermediate between a hyperbolic and an exponential function was sufficient to extend application of the model to most of the leading edge of the saturated responses to high energy stimuli. It was not necessary to assume involvement of any other non‐linearity or that any significant low‐pass filter followed the non‐linear stage of the model. A negative inner‐retinal component contributed to the later part of the rod‐driven a‐wave. After suppressing this component by blocking ionotropic glutamate receptors, the entire a‐wave up to the time of the first zero‐crossing scaled with stimulus energy and was well described by summing the response of the rod model with that of a model describing the leading edge of the rod‐bipolar cell response. The negative inner‐retinal component essentially cancelled the early part of the rod‐bipolar cell component and, for stimuli of moderate energy, made it appear that the photoreceptor current was the only significant component of the leading edge of the a‐wave. The leading edge of the cone‐driven a‐wave included a slow phase that continued up to the peak, and was reduced in amplitude either by a rod‐suppressing background or by the glutamate analogue, cis‐piperidine‐2,3‐dicarboxylic acid (PDA). Thus the slow phase represents a postreceptoral component present in addition to a fast component of the a‐wave generated by the cones themselves. At high stimulus energies, it appeared less than 5 ms after the stimulus. The leading edge of the cone‐driven a‐wave was adequately modelled as the sum of the output of a cone photoreceptor model similar to that for rods and a postreceptoral signal obtained by a single integration of the cone output. In addition, the output of the static non‐linear stage in the cone model was subject to a low‐pass filter with a time constant of no more than 1 ms. In conclusion, postreceptoral components must be taken into account when interpreting the leading edge of the rod‐ and cone‐driven a‐waves of the dark‐adapted ERG.


Neuron | 2006

Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse

Steven H. DeVries; Wei Li; Shannon Saszik

A cone photoreceptor releases glutamate at ribbons located atop narrow membrane invaginations that empty onto a terminal base. The unique shape of the cone terminal suggests that there are two transmitter microenvironments: within invaginations, where concentrations are high and exposures are brief; and at the base, where concentrations are low and exposure is smoothed by diffusion. Using multicell voltage-clamp recording, we show that different subtypes of Off bipolar cells sample transmitter in two microenvironments. The dendrites of an AMPA receptor-containing cell insert into invaginations and sense rapid fluctuations in glutamate concentration that can lead to transient responses. The dendrites of kainate receptor-containing cells make basal contacts and respond to a smoothed flow of glutamate that produces sustained responses. Signaling at the cone to Off bipolar cell synapse illustrates how transmitter spillover and synapse architecture can combine to produce distinct signals in postsynaptic neurons.


Developmental Dynamics | 2001

Rod contributions to the electroretinogram of the dark‐adapted developing zebrafish

Joseph Bilotta; Shannon Saszik; Sarah E. Sutherland

Anatomical studies of the developing zebrafish retina have shown that rods approach maturity at about 15 days postfertilization (dpf). Past work has examined the photopic spectral sensitivity function of the developing zebrafish, but not spectral sensitivity under dark‐adapted conditions. This study examined rod contributions to the dark‐adapted spectral sensitivity function of the ERG b‐wave component in developing zebrafish. ERG responses to stimuli of various wavelengths and irradiances were obtained from dark‐adapted fish at 6–8, 13–15, 21–24, and 27–29 dpf. The results show that dark‐adapted spectral sensitivity varied with age. Spectral sensitivity functions of the 6–8 and 13–15 dpf groups appeared to be cone dominated and contained little or no rod contributions. Spectral sensitivity functions of the 21–24 and 27–29 dpf groups appeared to have both rod and cone contributions. Even at the oldest age group tested, the dark‐adapted spectral sensitivity function did not match the adult function. Thus, consistent with anatomical findings, the rod contributions to the ERG spectral sensitivity function appear to develop with age; however, these contributions are still not adult‐like by 29 dpf, which is contrary to anatomical work. These results illustrate that the zebrafish is an excellent model for visual development.


Neurotoxicology and Teratology | 2002

Effects of embryonic exposure to ethanol on zebrafish visual function

Joseph Bilotta; Shannon Saszik; Carla M. Givin; Heather R. Hardesty; Sarah E. Sutherland

Across a variety of species, including humans, it has been shown that embryos exposed to ethanol display eye abnormalities as well as deficiencies in visual physiology and behavior. The purpose of this study was to examine the effects of embryonic exposure to ethanol on visual function in zebrafish. Visual function was assessed physiologically, via electroretinogram (ERG) recordings, and behaviorally, by measuring visual acuity with the optomotor response. Zebrafish larvae were exposed to 1.5% ethanol at various times during development, including the period of maximal eye development. The results show that ethanol effects on visual function were most pronounced when exposure occurred during eye development. ERG recordings from ethanol-exposed larvae differed from normal subjects both in shape of the response waveform and in visual thresholds under both light and dark adaptation; the differences were more pronounced under lower levels of adaptation. Also, ethanol-exposed larvae displayed lower visual acuity as determined from the optomotor response. These results indicate embryonic ethanol exposure affects visual function particularly when exposure occurs during eye development. In addition, these findings illustrate the usefulness of the zebrafish as a viable animal model for studying Fetal Alcohol Syndrome (FAS).


Current Biology | 2004

Regulation of Retinal Cone Bipolar Cell Differentiation and Photopic Vision by the CVC Homeobox Gene Vsx1

Akihira Ohtoshi; Steven W. Wang; Hidetaka Maeda; Shannon Saszik; Laura J. Frishman; William H. Klein; Richard R. Behringer

Cone bipolar cells of the vertebrate retina connect photoreceptors with ganglion cells to mediate photopic vision. Despite this important role, the mechanisms that regulate cone bipolar cell differentiation are poorly understood. VSX1 is a CVC domain homeoprotein specifically expressed in cone bipolar cells. To determine the function of VSX1, we generated Vsx1 mutant mice and found that Vsx1 mutant retinal cells form but do not differentiate a mature cone bipolar cell phenotype. Electrophysiological studies demonstrated that Vsx1 mutant mice have defects in their cone visual pathway, whereas the rod visual pathway was unaffected. Thus, Vsx1 is required for cone bipolar cell differentiation and regulates photopic vision perception.


Vision Research | 2004

In vivo studies of signaling in rod pathways of the mouse using the electroretinogram.

John G. Robson; Hidetaka Maeda; Shannon Saszik; Laura J. Frishman

PURPOSE (a) To examine the possibility that there is a threshold in the synaptic mechanism linking rods to rod bipolar cells that can reduce the transmission of continuous noise from the rods without blocking the transmission of any significant proportion of single-photon responses. (b) To estimate the level of this threshold and the amplitude of the continuous noise which it can serve to reduce. (c) To identify the location of the threshold mechanism in the rod to rod bipolar cell pathway. METHODS Corneal electroretinogram recordings were made from dark-adapted mice anesthetized with ketamine/xylazine after inner-retinal components had been suppressed to isolate PII, the response of depolarizing bipolar cells. Suppression was achieved by intravitreal injections of GABA, TTX, or in Cx36 KO animals by crushing the optic nerve and waiting for ganglion cells to degenerate. RESULTS All energy-scaled records of isolated PII obtained with ganzfeld stimuli that gave rise to much less than one photoisomerization (R*) per rod (0.01-0.2 R*/rod), had an essentially identical waveform. Stronger stimuli caused a reduction in the peak amplitude of energy-scaled records (saturation) and stimuli strong enough to produce multiple isomerizations in individual rods resulted in a shortening of the response latency and an increase of the energy-scaled amplitude at early times (supralinearity). The shape of the rising edge of isolated PII changed with flash energy in a way that was consistent with the existence of a synaptic threshold whose level was less than one tenth of the amplitude of single-photon signals and a continuous noise whose rms amplitude was even less than this. However, when measured at the time of the peak, the amplitude of PII increased linearly in proportion to stimulus energy from the very lowest levels up to the point where there was, on average, 0.2 R*/rod. CONCLUSIONS There is a threshold nonlinearity operating at the output of the rod to rod bipolar cell synapse that can usefully reduce the transmission of continuous rod noise without significantly affecting the transmission of single-photon signals. This nonlinearity does not affect the overall linear function of the rod pathway at levels at which it is effectively operating in a photon-counting mode.


Journal of Neurophysiology | 2009

Genetic Dissection of Rod and Cone Pathways in the Dark-Adapted Mouse Retina

Muhammad M. Abd-El-Barr; Mark E. Pennesi; Shannon Saszik; A. J. Barrow; Janis Lem; Debra E. Bramblett; David L. Paul; Laura J. Frishman; Samuel M. Wu

A monumental task of the mammalian retina is to encode an enormous range (>10(9)-fold) of light intensities experienced by the animal in natural environments. Retinal neurons carry out this task by dividing labor into many parallel rod and cone synaptic pathways. Here we study the operational plan of various rod- and cone-mediated pathways by analyzing electroretinograms (ERGs), primarily b-wave responses, in dark-adapted wildtype, connexin36 knockout, depolarizing rod-bipolar cell (DBCR) knockout, and rod transducin alpha-subunit knockout mice [WT, Cx36(-/-), Bhlhb4(-/-), and Tralpha(-/-)]. To provide additional insight into the cellular origins of various components of the ERG, we compared dark-adapted ERG responses with response dynamic ranges of individual retinal cells recorded with patch electrodes from dark-adapted mouse retinas published from other studies. Our results suggest that the connexin36-mediated rod-cone coupling is weak when light stimulation is weak and becomes stronger as light stimulation increases in strength and that rod signals may be transmitted to some DBCCs via direct chemical synapses. Moreover, our analysis indicates that DBCR responses contribute about 80% of the overall DBC response to scotopic light and that rod and cone signals contribute almost equally to the overall DBC responses when stimuli are strong enough to saturate the rod bipolar cell response. Furthermore, our study demonstrates that analysis of ERG b-wave of dark-adapted, pathway-specific mutants can be used as an in vivo tool for dissecting rod and cone synaptic pathways and for studying the functions of pathway-specific gene products in the retina.


Documenta Ophthalmologica | 2000

Effects of experimental glaucoma in macaques on the multifocal ERG

Laura J. Frishman; Shannon Saszik; Ronald S. Harwerth; Suresh Viswanathan; Yong Li; Earl L. Smith rd; John G. Robson; George Barnes

Multifocal ERGs (MERGs) of 5 adult monkeys (Macaca mulatta) with inner retinal defects caused by laser-induced glaucoma were compared to MERGs from 3 monkeys with inner retinal activity suppressed pharmacologically. MERGs were recorded with DTL fiber electrodes from anesthetized monkeys. Stimuli consisted of 103 equal size hexagons within 17° of the fovea. Stimuli at each location passed through a typical VERIS m-sequence of white (200 cd/m2) and black (12 cd/m2) presentations. In animals with laser-induced glaucoma, visual field sensitivity was assessed by static perimetry using the Humphrey C24-2 full-threshold program modified for animal behavior. Inner retinal (amacrine and ganglion cell) activity was suppressed by intravitreal injection of TTX (4.7–7.6 μM) and NMDA (1.6–5 mM). In normal eyes the first order response (1st order kernel) was larger and more complex, with more distinct oscillations (>60 Hz) in central than in peripheral locations. The 2nd order kernel also was dominated by oscillatory activity. There were naso-temporal variations in both kernels. Pharmacological suppression of inner retinal activity reduced or eliminated the oscillatory behavior, and naso-temporal variations. The 1st order kernel amplitude was increased most and was largest at the fovea. Removed inner retinal responses also were largest at the fovea. The 2nd order kernel was greatly reduced at all locations. In eyes with advanced glaucoma, the effects were similar to those produced by suppressing inner retinal activity, but the later portion of the 1st order kernel waveform was different, lacking a dip after the large positive wave. Visual sensitivity losses and MERG changes both increased over the timecourse of glaucoma, with changes in the MERG being more diffusely distributed across the visual field. We conclude that 1st and 2nd order responses of the primate MERG can be identified that originate from inner retina and are sensitive indicators of glaucomatous neuropathy.


The Journal of Neuroscience | 2012

A Mammalian Retinal Bipolar Cell Uses Both Graded Changes in Membrane Voltage and All-or-Nothing Na+ Spikes to Encode Light

Shannon Saszik; Steven H. DeVries

Barlow (1953) studied summation in ganglion cell receptive fields and observed a fine discrimination of spatial information from which he inferred that retinal interneurons use analog signals to process images. Subsequent intracellular recordings confirmed that the interneurons of the outer retina, including photoreceptors, horizontal cells, and bipolar cells, respond to light with slow, graded changes in membrane potential. Analog processing may enable interneurons to discriminate fine gradations in light intensity and spatiotemporal pattern, but at the expense of the speed, temporal precision, and threshold discrimination that are characteristic of all-or-nothing Na+ spikes. We show that one type of mammalian On bipolar cell, the ground squirrel cb5b, has a large tetrodotoxin (TTX)-sensitive Na+ current. When recorded from in the perforated patch configuration, cb5b cells can signal the onset of a light step with 1–3 all-or-nothing action potentials that attain a peak amplitude of −10 to −20 mV (peak width at half-height equals 2–3 ms). When exposed to a continuous, temporally fluctuating stimulus, cb5b cells generate both graded and spiking responses. Cb5b cells spike with millisecond precision, selecting for stimulus sequences in which transitions to light are preceded by a period of darkness. The axon terminals of cb5b bipolar cells costratify with the dendrites of amacrine and ganglion cells that encode light onset with a short latency burst of spikes. The results support the idea that a spiking On bipolar cell is part of a dedicated retinal pathway for rapidly and reliably signaling dark to light transitions.

Collaboration


Dive into the Shannon Saszik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Bilotta

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Machelle T. Pardue

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge