Shannon W. Boettcher
University of Oregon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shannon W. Boettcher.
Chemical Reviews | 2010
Michael G. Walter; Emily L. Warren; James R. McKone; Shannon W. Boettcher; Qixi Mi; Elizabeth A. Santori; Nathan S. Lewis
Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2
Nature Materials | 2010
Michael D. Kelzenberg; Shannon W. Boettcher; Jan A. Petykiewicz; Daniel B. Turner-Evans; Morgan C. Putnam; Emily L. Warren; Joshua M. Spurgeon; Ryan M. Briggs; Nathan S. Lewis; Harry A. Atwater
Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the arrays volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Journal of the American Chemical Society | 2014
Lena Trotochaud; Samantha L. Young; James K. Ranney; Shannon W. Boettcher
Fe plays a critical, but not yet understood, role in enhancing the activity of the Ni-based oxygen evolution reaction (OER) electrocatalysts. We report electrochemical, in situ electrical, photoelectron spectroscopy, and X-ray diffraction measurements on Ni(1-x)Fe(x)(OH)2/Ni(1-x)Fe(x)OOH thin films to investigate the changes in electronic properties, OER activity, and structure as a result of Fe inclusion. We developed a simple method for purification of KOH electrolyte that uses precipitated bulk Ni(OH)2 to absorb Fe impurities. Cyclic voltammetry on rigorously Fe-free Ni(OH)2/NiOOH reveals new Ni redox features and no significant OER current until >400 mV overpotential, different from previous reports which were likely affected by Fe impurities. We show through controlled crystallization that β-NiOOH is less active for OER than the disordered γ-NiOOH starting material and that previous reports of increased activity for β-NiOOH are due to incorporation of Fe-impurities during the crystallization process. Through-film in situ conductivity measurements show a >30-fold increase in film conductivity with Fe addition, but this change in conductivity is not sufficient to explain the observed changes in activity. Measurements of activity as a function of film thickness on Au and glassy carbon substrates are consistent with the hypothesis that Fe exerts a partial-charge-transfer activation effect on Ni, similar to that observed for noble-metal electrode surfaces. These results have significant implications for the design and study of Ni(1-x)Fe(x)OOH OER electrocatalysts, which are the fastest measured OER catalysts under basic conditions.
Journal of the American Chemical Society | 2012
Lena Trotochaud; James K. Ranney; Kerisha N. Williams; Shannon W. Boettcher
Water oxidation is a critical step in water splitting to make hydrogen fuel. We report the solution synthesis, structural/compositional characterization, and oxygen evolution reaction (OER) electrocatalytic properties of ~2-3 nm thick films of NiO(x), CoO(x), Ni(y)Co(1-y)O(x), Ni(0.9)Fe(0.1)O(x), IrO(x), MnO(x), and FeO(x). The thin-film geometry enables the use of quartz crystal microgravimetry, voltammetry, and steady-state Tafel measurements to study the electrocatalytic activity and electrochemical properties of the oxides. Ni(0.9)Fe(0.1)O(x) was found to be the most active water oxidation catalyst in basic media, passing 10 mA cm(-2) at an overpotential of 336 mV with a Tafel slope of 30 mV dec(-1) with oxygen evolution reaction (OER) activity roughly an order of magnitude higher than IrO(x) control films and similar to the best known OER catalysts in basic media. The high activity is attributed to the in situ formation of layered Ni(0.9)Fe(0.1)OOH oxyhydroxide species with nearly every Ni atom electrochemically active. In contrast to previous reports that showed synergy between Co and Ni oxides for OER catalysis, Ni(y)Co(1-y)O(x) thin films showed decreasing activity relative to the pure NiO(x) films with increasing Co content. This finding is explained by the suppressed in situ formation of the active layered oxyhydroxide with increasing Co. The high OER activity and simple synthesis make these Ni-based catalyst thin films useful for incorporating with semiconductor photoelectrodes for direct solar-driven water splitting or in high-surface-area electrodes for water electrolysis.
Journal of the American Chemical Society | 2015
Michaela S. Burke; Matthew G. Kast; Lena Trotochaud; Adam M. Smith; Shannon W. Boettcher
Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co(1-x)Fe(x)(OOH) is ∼100-fold higher for x ≈ 0.6-0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co(2+/3+) redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co(1-x)Fe(x)(OOH) is conductive under OER conditions (∼0.7-4 mS cm(-1) at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10(-2) mS cm(-1)) only at high overpotentials >400 mV. The apparent OER activity of FeOOH is thus limited by low conductivity. Microbalance measurements show that films with x ≥ 0.54 (i.e., Fe-rich) dissolve in 1 M KOH electrolyte under OER conditions. For x < 0.54, the films appear chemically stable, but the OER activity decreases by 16-62% over 2 h, likely due to conversion into denser, oxide-like phases. We thus hypothesize that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host. These results are important as Fe-containing Co- and Ni-(oxy)hydroxides are the fastest OER catalysts known.
Journal of the American Chemical Society | 2011
Shannon W. Boettcher; Emily L. Warren; Morgan C. Putnam; Elizabeth A. Santori; Daniel B. Turner-Evans; Michael D. Kelzenberg; Michael G. Walter; James R. McKone; Bruce S. Brunschwig; Harry A. Atwater; Nathan S. Lewis
Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n(+) emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H(2) evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing less than 50% of the above-band-gap incident photons. Analogous p-Si wire-array electrodes yielded efficiencies <0.2%, largely limited by the low photovoltage generated at the p-Si/H(2)O junction.
Science | 2010
Shannon W. Boettcher; Joshua M. Spurgeon; Morgan C. Putnam; Emily L. Warren; Daniel B. Turner-Evans; Michael D. Kelzenberg; James R. Maiolo; Harry A. Atwater; Nathan S. Lewis
Silicon Microwires as Photocathodes Solar hydrogen generation will require the development of photocathodes with high surface area, durability, and efficiency. Silicon microwire arrays, which allow for greater light penetration, could achieve this goal if the carrier mobilities are sufficiently high so that surface reactions occur before charges recombine. Boettcher et al. (p. 185) report the electronic properties on positively doped silicon microwire arrays that were grown with copper catalysts and used in a methyl viologen redox system. Although equivalent efficiencies for normal solar fluxes were only 2 to 3%, the high internal efficiencies and low use of the available optical flux suggest that further improvements are possible. The use of copper catalysts helps to increase charge-carrier mobilities in silicon microwire growth. Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid–growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Energy and Environmental Science | 2011
James R. McKone; Emily L. Warren; Matthew J. Bierman; Shannon W. Boettcher; Bruce S. Brunschwig; Nathan S. Lewis; Harry B. Gray
The dark electrocatalytic and light photocathodic hydrogen evolution properties of Ni, Ni–Mo alloys, and Pt on Si electrodes have been measured, to assess the viability of earth-abundant electrocatalysts for integrated, semiconductor coupled fuel formation. In the dark, the activities of these catalysts deposited on degenerately doped p+-Si electrodes increased in the order Ni < Ni–Mo ≤ Pt. Ni–Mo deposited on degenerately doped Si microwires exhibited activity that was very similar to that of Pt deposited by metal evaporation on planar Si electrodes. Under 100 mW cm−2 of Air Mass 1.5 solar simulation, the energy conversion efficiencies of p-type Si/catalyst photoelectrodes ranged from 0.2–1%, and increased in the order Ni ≈ Ni–Mo < Pt, due to somewhat lower photovoltages and photocurrents for p-Si/Ni–Mo relative to p-Si/Ni and p-Si/Pt photoelectrodes. Deposition of the catalysts onto microwire arrays resulted in higher apparent catalytic activities and similar photoelectrode efficiencies than were observed on planar p-Si photocathodes, despite lower light absorption by p-Si in the microwire structures.
Energy and Environmental Science | 2010
Morgan C. Putnam; Shannon W. Boettcher; Michael D. Kelzenberg; Daniel B. Turner-Evans; Joshua M. Spurgeon; Emily L. Warren; Ryan M. Briggs; Nathan S. Lewis; Harry A. Atwater
Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (Jsc) of up to 24 mA cm-2, and fill factors >65% and employed Al2O3 dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiNx:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high Jsc. Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher Jsc of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements.
Energy and Environmental Science | 2011
Michael D. Kelzenberg; Daniel B. Turner-Evans; Morgan C. Putnam; Shannon W. Boettcher; Ryan M. Briggs; Jae Yeon Baek; Nathan S. Lewis; Harry A. Atwater
Crystalline Si wires, grown by the vapor–liquid–solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln ≫ 30 µm) and low surface recombination velocities (S ≪ 70 cm·s−1). Single-wire radial p–n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ∼600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.