Shanshan Qu
Southern Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shanshan Qu.
Journal of Psychiatric Research | 2013
Shanshan Qu; Yong Huang; Zhang-Jin Zhang; Junqi Chen; Renyong Lin; Chongqi Wang; Ganlong Li; Hei Kiu Wong; Canghuan Zhao; Ji-Yang Pan; Shenchang Guo; Yan-Chi Zhang
Acupuncture possesses the antidepressant potential. In this 6-week randomized controlled trial with 4-week follow-up, 160 patients with major depressive disorder (MDD) were randomly assigned to paroxetine (PRX) alone (n = 48) or combined with 18 sessions of manual acupuncture (MA, n = 54) or electrical acupuncture (EA, n = 58). Treatment outcomes were measured mainly using the 17-item Hamilton Depression Rating Scale (HAMD-17), Self-rating Depression Scale (SDS), clinical response and remission rates. Average PRX dose taken and proportion of patients who required an increased PRX dose due to symptom aggravation were also obtained. Both additional MA and EA produced a significantly greater reduction from baseline in score on HAMD-17 and SDS at most measure points from week 1 through week 6 compared to PRX alone. The clinical response was markedly greater in MA (69.8%) and EA (69.6%) groups than the group treated with PRX alone (41.7%, P = 0.004). The proportion of patients who required an increase dose of PRX due to symptom aggravation was significantly lower with MA (5.7%) and EA (8.9%) than PRX alone (22.9%, P = 0.019). At 4 weeks follow-up after completion of acupuncture treatment, patients with EA, but not MA, continued to show significantly greater clinical improvement. Incidence of adverse events was not different in the three groups. Our study indicates that acupuncture can accelerate the clinical response to selective serotonin reuptake inhibitors (SSRIs) and prevent the aggravation of depression. Electrical acupuncture may have a long-lasting enhancement of the antidepressant effects (Trial Registration: ChiCTR-TRC-08000278).
BMC Neuroscience | 2012
Yong Huang; Chunzhi Tang; Shuxia Wang; Yangjia Lu; Wei Shen; Junjun Yang; Junqi Chen; Renyong Lin; Shaoyang Cui; Huiling Xiao; Shanshan Qu; Xinsheng Lai; Baoci Shan
BackgroundAcupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5) needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software.ResultsCompared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA) 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9.ConclusionNeedling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients.
PLOS ONE | 2014
Junqi Chen; Jizhou Wang; Yong Huang; Xinsheng Lai; Chunzhi Tang; Junjun Yang; Junxian Wu; Tongjun Zeng; Shanshan Qu
Objective To study the influence of acupuncture at Waiguan (TE5) on the functional connectivity of the central nervous system of patients with ischemic stroke. Methods Twenty-four patients with ischemic stroke in the left basal ganglia were randomized based on gender to receive TE5 acupuncture (n = 12) or nonacupoint acupuncture (n = 12). Each group underwent sham acupuncture and then verum acupuncture while being scanned with functional magnetic resonance imaging. Six regions of interest (ROI) were defined, including bilateral motor, somatosensory, and bilateral basal ganglia areas. The functional connectivity between these ROIs and all voxels of the brain was analyzed in Analysis of Functional NeuroImages(AFNI) to explore the differences between verum acupuncture and sham acupuncture at TE5 and between TE5 acupuncture and nonacupoint acupuncture. The participants were blinded to the allocation. Result The effect of acupuncture on six seed-associated networks was explored. The result demonstrated that acupuncture at Waiguan (TE5) can regulate the sensorimotor network of the ipsilesional hemisphere, stimulate the contralesional sensorimotor network, increase cooperation of bilateral sensorimotor networks, and change the synchronization between the cerebellum and cerebrum. Furthermore, a lot of differences of effect existed between verum acupuncture and sham acupuncture at TE5, but there was little difference between TE5 acupuncture and nonacupoint acupuncture. Conclusion The modulation of synchronizations between different regions within different brain networks might be the mechanism of acupuncture at Waiguan (TE5). Stimulation of the contralesional sensorimotor network and increase of cooperation of bilateral hemispheres imply a compensatory effect of the intact hemisphere, whereas changes in synchronization might influence the sensorimotor function of the affected side of the body. Trial Registration Chinese Clinical Trial Registry ChiCTR-ONRC-08000255
Acupuncture in Medicine | 2013
Guifeng Zhang; Shanshan Qu; Yu Zheng; Junqi Chen; Guizhu Deng; Canhong Yang; Yong Huang
Objective To identify the key cerebral functional region affected by acupuncture point needling by examining cerebral networks using functional connectivity MRI (fcMRI) and analysing changes in the key regions of these brain networks at different time points after needle removal. Methods Twelve healthy volunteers received 30 min of electroacupuncture (EA) at the Baihui (GV20) and Yintang acupuncture points and then underwent two fMRI scans, one each at 5 and 15 min after needle removal. Related brain networks were analysed centred at different ‘seeds’, centres which functionally connect the other cerebral regions in an organised network, such as the anterior frontal lobe, anterior cingulate gyrus, parahippocampal gyrus, amygdala, hypothalamus, head of the caudate nucleus and anterior lobe of the cerebellum. Networks were analysed based on the resting cerebral functional connection, and the differences in the activities of the brain networks between the two time points were compared. Results At 5 min after needle removal, 12 brain functional regions were involved in organising the network centred at the caudate nucleus ‘seed.’ This number was greater than the number of related brain networks centred at the other ‘seeds’. At 15 min after needle removal, 15 and 14 brain functional regions were involved in organised networks centred at the parahippocampal and hypothalamus ‘seeds’, respectively; these numbers were greater than the numbers of other related brain networks centred at the other ‘seeds’. Conclusions A brain network composed of a large number of cerebral functional regions was found after EA at GV20 and Yintang in healthy volunteers. The key brain ‘seed’ supporting the largest brain network changed between 5 and 15 min after needle removal.
Evidence-based Complementary and Alternative Medicine | 2014
Chunxiao Wu; Shanshan Qu; Jiping Zhang; Junqi Chen; Shaoqun Zhang; Zhipeng Li; Jiarong Chen; Huailiang Ouyang; Yong Huang; Chunzhi Tang
Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function.
Acupuncture in Medicine | 2013
Yong Huang; Junqi Chen; Xinsheng Lai; Chunzhi Tang; Junjun Yang; Hua Chen; Junxian Wu; Huiling Xiao; Shanshan Qu; Yi-Dan Zhang; Zhang-Jin Zhang
Objective Acupuncture is beneficial in treating stroke neuropsychiatric symptoms. The present study aimed to identify functional brain response to active acupuncture in patients with unilateral ischaemic stroke using functional MRI (fMRI). Methods A total of 10 patients aged 47–65 years with left hemispheric ischaemic stroke received single-session manual acupuncture at the TE5 point of the affected (right) forearm. A 6-min tactile control procedure in which an acupuncture needle tip was alternately touched and removed from the skin at the acupuncture point for 30 s each was performed first, followed by active acupuncture in a blocking paradigm consisting of six 30-s twist blocks of rotation interspersed between six 30-s blocks of rest. A whole brain scan was simultaneously conducted on a 3.0-T imager. Activated and deactivated brain regions during tactile stimulation and active acupuncture relative to rest were obtained via group analysis. Results Compared to tactile stimulation, needling with twist manipulation modulated many more widespread brain areas. All the brain areas activated and deactivated by active acupuncture relative to tactile stimulation were distributed in the primary sensorimotor and medial frontal cortex of the unaffected, but not the affected hemisphere. Conclusions Active acupuncture results in lateralisation of functional cerebral response to the contralateral unaffected hemisphere in patients with unilateral stroke. This lateralisation may represent an effect of acupuncture in enhancing a compensatory process by redistributing functions into the intact cortex, particularly in the unaffected hemisphere.
Acupuncture in Medicine | 2012
Yu Zheng; Shanshan Qu; Na Wang; Limin Liu; Guanzhong Zhang; Xiaoyu Jiang; Junqi Chen; Yong Huang; Zhang-Jin Zhang
Objective The aim of the present work was to observe the activation/deactivation of cerebral functional regions after electroacupuncture (EA) at Yintang (EX-HN3) and GV20 by functional MRI (fMRI). Design A total of 12 healthy volunteers were stimulated by EA at Yintang and GV20 for 30 min. Resting-state fMRI scans were performed before EA, and at 5 and 15 min after needle removal. Statistical parametric mapping was used to preprocess initial data, and regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) were analysed. Results ReHo at 5 min post stimulation showed increases in the left temporal lobe and cerebellum and decreases in the left parietal lobe, occipital lobe and right precuneus. At 15 min post stimulation, ReHo showed increases in the left fusiform gyrus; lingual gyrus; middle temporal gyrus; postcentral gyrus; limbic lobe; cingulate gyrus; paracentral lobule; cerebellum, posterior lobe, declive; right cuneus and cerebellum, anterior lobe, culmen. It also showed decreases in the left frontal lobe, parietal lobe, right temporal lobe, frontal lobe, parietal lobe and right cingulate gyrus. ALFF at 5 min post stimulation showed increases in the right temporal lobe, but decreases in the right limbic lobe and posterior cingulate gyrus. At 15 min post stimulation ALFF showed increases in the left frontal lobe, parietal lobe, occipital lobe, right temporal lobe, parietal lobe, occipital lobe and cerebellum, but decreases in the left frontal lobe, anterior cingulate gyrus, right frontal lobe and posterior cingulate gyrus. Conclusions After EA stimulation at Yintang and GV20, which are associated with psychiatric disorder treatments, changes were localised in the frontal lobe, cingulate gyrus and cerebellum. Changes were higher in number and intensity at 15 min than at 5 min after needle removal, demonstrating lasting and strong after-effects of EA on cerebral functional regions.
Evidence-based Complementary and Alternative Medicine | 2016
Jialing Zhang; Kangbai Huang; Guoxin Zhong; Yong Huang; Suhe Li; Shanshan Qu; Jiping Zhang
Acupuncture has been used to treat chronic atrophic gastritis (CAG) in traditional Chinese medicine (TCM) for centuries. In this study, we evaluated the effect of acupuncture at Zusanli (ST36), Zhongwan (CV12), and Pishu (BL20) acupoints on weight changes of rats, histological changes of gastric glands, and expressions changes of nuclear factor-kappa B (NF-κB) p65, microRNA- (miR-) 155, miR-21, and miR-146a in CAG rats induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) combined with irregular diet. Consequently, we found that acupuncture treatment elevated body weight of rats significantly when compared to the model group. By observing histological changes, we found that the acupuncture group showed better improvement of gastric mucosa injury than the model group. Our results also demonstrated upregulation of NF-κB p65, miR-155, and miR-21 in gastric tissue of CAG rats and a positive correlation between miR-155 and miR-21. Relatively, expression of miR-146a was downregulated and negative correlation relationships between miR-146a and miR-155/miR-21 in CAG rats were observed. Additionally, expressions of NF-κB p65, miR-155, and miR-21 were downregulated and miR-146a was upregulated after acupuncture treatment. Taken together, our data imply that acupuncture can downregulate NF-κB p65, miR-155, and miR-21 and upregulate miR-146a expression in CAG rats. NF-κB p65, miR-155, miR-21, and miR-146a may play important roles in therapeutic effect of acupuncture in treating CAG.
Neural Regeneration Research | 2014
Ji Qi; Junqi Chen; Yong Huang; Xinsheng Lai; Chunzhi Tang; Junjun Yang; Hua Chen; Shanshan Qu
Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revealed activation in right parietal lobe (Brodmann areas 7 and 19), the right temporal lobe (Brodmann area 39), the right limbic lobe (Brodmann area 23) and bilateral occipital lobes (Brodmann area 18). Furthermore, inhibition of bilateral frontal lobes (Brodmann area 4, 6, and 45), right parietal lobe (Brodmann areas 1 and 5) and left temporal lobe (Brodmann area 21) were observed in the true point group. Activation in the precuneus of right parietal lobe (Brodmann area 7) and inhibition of the left superior frontal gyrus (Brodmann area 10) was observed in the sham group. Compared with sham acupuncture, acupuncture at Waiguan in stroke patients inhibited Brodmann area 5 on the healthy side. Results indicated that the altered specificity of sensation-associated cortex (Brodmann area 5) is possibly associated with a central mechanism of acupuncture at Waiguan for stroke patients.
Evidence-based Complementary and Alternative Medicine | 2016
Yu Zheng; Jiping Zhang; Yanjie Wang; Yuying Wang; Yujun Lan; Shanshan Qu; Chunzhi Tang; Yong Huang
The therapeutic effects of acupuncture in decreasing blood pressure are ambiguous and underlying acupuncture in hypertension treatment has not been investigated. Our objective was to observe the change of quality of life and compare the differences in brain functional connectivity by investigating instantaneous and short-term acupuncture treatment in essential hypertension patients. A total of 30 patients were randomly divided into the LR3 group and sham acupoint group. Subjects received resting-state fMRI among preacupuncture, postinstantaneous, and short-term acupuncture treatment in two groups. Hypothalamus was selected as the seed point to analyze the changes in connectivity. We found three kinds of results: (1) There was statistical difference in systolic blood pressure in LR3 group after the short-term treatment and before acupuncture. (2) Compared with sham acupoint, acupuncture at LR3 instantaneous effects in the functional connectivity with seed points was more concentrated in the frontal lobe. (3) Compared with instantaneous effects, acupuncture LR3 short-term effects in the functional connectivity with seed points had more regions in frontal lobe, cerebellum, and insula. These brain areas constituted a neural network structure with specific functions that could explain the mechanism of therapy in hypertension patients by LR3 acupoint.