Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shanshan Tang is active.

Publication


Featured researches published by Shanshan Tang.


Scientific Reports | 2016

High Resolution X-ray-Induced Acoustic Tomography

Liangzhong Xiang; Shanshan Tang; Moiz Ahmad; Lei Xing

Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350u2009μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.


IEEE Transactions on Medical Imaging | 2016

Transurethral Photoacoustic Endoscopy for Prostate Cancer: A Simulation Study

Shanshan Tang; Jian Chen; Pratik Samant; Kelly L. Stratton; Liangzhong Xiang

The purpose of this study was to optimize the configuration of a photoacoustic endoscope (PAE) for prostate cancer detection and therapy monitoring. The placement of optical fiber bundles and ultrasound detectors was chosen to maximize the photoacoustic imaging penetration depth. We performed both theoretical calculations and simulations of this optimized PAE configuration on a prostate-sized phantom containing tumor and various photosensitizer concentrations. The optimized configuration of PAE with transurethral light delivery simultaneously increases the imaging penetration depth and improves image quality. Thermal safety, investigated via COMSOL Multiphysics, shows that there is only a 4 mK temperature rise in the urethra during photoacoustic imaging, which will cause no thermal damage. One application of this PAE has been demonstrated for quasi-quantifying photosensitizer concentrations during photodynamic therapy. The sensitivity of the photoacoustic detection for TOOKAD was 0.18 ng/mg at a 763 nm laser wavelength. Results of this study will greatly enhance the potential of prostate PAE for in vivo monitoring of drug delivery and guidance of the laser-induced therapy for future clinical use.


Applied Physics Letters | 2017

X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array

Shanshan Tang; D. H. Nguyen; Ali Zarafshani; Chris Ramseyer; Bin Zheng; Hong Liu; Liangzhong Xiang

The objective of this study is to develop and test a unique X-ray-induced acoustic computed tomography system that combines the advantages of high X-ray imaging contrast and high ultrasonic spatial resolution. The system features a 5u2009MHz 128-element ultrasound transducer ring-array formed into a full circular aperture. A parallel data receiver, which consists of a dedicated 128-channel preamplifier and a 128-channel data acquisition module, provides full tomographic imaging at a speed of up to 25 frames per second. Details of the system design and calibration are presented, along with the characteristic results of the imaging resolution. The tomographic imaging performance is demonstrated through images of a phantom with a spatial resolution up to 138u2009μm. The study results indicate that this imaging device and the methodology provide a rapid and high resolution approach for the dynamic imaging of information, and it may have the potential for becoming a promising noninvasive imaging modality to be used in...


Medical Physics | 2018

X‐ray‐induced acoustic computed tomography for 3D breast imaging: A simulation study

Shanshan Tang; Kai Yang; Y Chen; Liangzhong Xiang

PURPOSEnThe objective of this study is to demonstrate the feasibility of x-ray-induced acoustic computed tomography (XACT) for early breast un-palpable microcalcification (μCa) detection in three dimensions (3D). The proposed technique provides the true 3D imaging for breast volume which overcomes the disadvantage of the tissue superposition in mammography.nnnMETHODSnA 3D breast digital phantom was rendered from two-dimensional (2D) breast CT slices. Three different tissue types, including the skin, adipose tissue, and glandular tissue, were labeled in the 3D breast phantom. μCas were manually embedded in different locations inside the breast phantom. For each tissue type, the initial pressure rise caused by the x-ray-induced acoustic (XA) effect was calculated according to its themoacoustic properties. The XA waves propagation from the point of generation and its detection by ultrasound detector array were simulated by Matlab K-Wave toolbox. The 3D breast XACT volume with μCa was acquired without tissue superposition, and the system was characterized by μCas placed at different locations.nnnRESULTSnThe simulation results illustrated that the proposed breast XACT system has the ability to show the μCa cluster in 3D without any tissue superposition. Meanwhile, μCa as small as 100 μm in size can be detected with high imaging contrast, high signal to noise ratio (SNR), and high contrast to noise ratio (CNR). The dose required by the proposed XACT configuration was calculated to be 0.4 mGy for a 4.5 cm-thick compressed breast. This is one-tenth of the dose level of a typical two-view mammography for a breast with the same compression thickness.nnnCONCLUSIONSnThe initial exploration for the feasibility of 3D breast XACT has been conducted in this study. The system feasibility and characterization were illustrated through a 3D breast phantom and simulation works. The 3D breast XACT with the proposed system configuration has great potential to be applied as a low-dose screening and diagnostic technique for early un-palpable lesion in the breast.


Applied Physics Letters | 2018

X-ray-induced acoustic computed tomography of concrete infrastructure

Shanshan Tang; Chris Ramseyer; Pratik Samant; Liangzhong Xiang

X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.


Proceedings of SPIE | 2016

Photoacoustic image-guided drug delivery in the prostate

Shanshan Tang; Jian Chen; Pratik Samant; Liangzhong Xiang

Image guided drug delivery is a novel strategy that combines the effect of therapy and visibility into one system. Here we apply photoacoustic (PA) imaging to visualize the drug delivery process, and perform a simulation study on monitoring the photosensitizer concentration in a prostate tumor during photodynamic therapy (PDT). A 3D optical model of the human prostate is developed, and the light absorption distribution in the prostate is estimated by the Monte Carlo simulation method. The filtered back-projection algorithm is used to reconstruct PA images. PA images of transurethral laser/transrectal ultrasound are compared to those of transrectal laser/ultrasound. Results show that the transurethral laser has a better penetration depth in the prostate compared with transrectal one. Urethral thermal safety is investigated via COMSOL Multiphysics, and the results show that the proposed pulsed transurethral laser will cause no thermal damage on the urethral surface. Regression analysis for PA signal amplitude and drug concentration demonstrates that the PA technique has the potential to monitor drug distributions in PDT, as well as in other laser-based prostate therapy modalities.


Proceedings of SPIE | 2016

Sub-mSV breast XACT scanner: concept and design

Shanshan Tang; Liqiang Ren; Pratik Samant; Jian Chen; Hong Liu; Liangzhong Xiang

Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.


Medical Physics | 2016

TH‐AB‐209‐07: High Resolution X‐Ray‐Induced Acoustic Computed Tomography

Liangzhong Xiang; Shanshan Tang; Moiz Ahmad; Lei Xing

PURPOSEnX-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges.nnnMETHODSnFirst, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm.nnnRESULTSnThe theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm.nnnCONCLUSIONnIn XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.


Medical Physics | 2016

TU‐FG‐BRB‐08: Challenges, Limitations and Future Outlook Towards Clinical Translation of Proton Acoustic Range Verification

Siavash Yousefi; Moiz Ahmad; Liangzhong Xiang; Shanshan Tang; Y Chen; Michael Q. Zhang; J Zou; Kikuo Umegaki; Hiroki Shirato; Lei Xing

PURPOSEnTo report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed.nnnMETHODSnThe acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system to detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine.nnnRESULTSnGiven 30-800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal.nnnCONCLUSIONnWe have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.


Medical Physics | 2016

SU-F-I-14: 3D Breast Digital Phantom for XACT Imaging

Shanshan Tang; Y Chen; S Ahmad; Kai Yang; R Laaroussi; J Chen; P Samant; Liangzhong Xiang

PURPOSEnThe X-ray induced acoustic computed tomography (XACT) is a new imaging modality which combines X-ray contrast and high ultrasonic resolution in a single modality. Using XACT in breast imaging, a 3D breast volume can be imaged by only one pulsed X-ray radiation, which could dramatically reduce the imaging dose for patients undergoing breast cancer screening and diagnosis. A 3D digital phantom that contains both X-ray properties and acoustic properties of different tissue types is indeed needed for developing and optimizing the XACT system. The purpose of this study is to offer a realistic breast digital phantom as a valuable tool for improving breast XACT imaging techniques and potentially leading to better diagnostic outcomes.nnnMETHODSnA series of breast CT images along the coronal plane from a patient who has breast calcifications are used as the source images. A HU value based segmentation algorithm is employed to identify breast tissues in five categories, namely the skin tissue, fat tissue, glandular tissue, chest bone and calcifications. For each pixel, the dose related parameters, such as material components and density, and acoustic related parameters, such as frequency-dependent acoustic attenuation coefficient and bandwidth, are assigned based on tissue types. Meanwhile, other parameters which are used in sound propagation, including the sound speed, thermal expansion coefficient, and heat capacity are also assigned to each tissue.nnnRESULTSnA series of 2D tissue type image is acquired first and the 3D digital breast phantom is obtained by using commercial 3D reconstruction software. When giving specific settings including dose depositions and ultrasound center frequency, the X-ray induced initial pressure rise can be calculated accordingly.nnnCONCLUSIONnThe proposed 3D breast digital phantom represents a realistic breast anatomic structure and provides a valuable tool for developing and evaluating the system performance for XACT.

Collaboration


Dive into the Shanshan Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Chen

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y Chen

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Liu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Ahmad

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge