Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shanshan Zhu.
Virology | 2011
Li Wei; Lei Hou; Shanshan Zhu; Jing Wang; Jiao Zhou; Jue Liu
Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85α of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.
Journal of Virology | 2012
Li Wei; Shanshan Zhu; Jing Wang; Jue Liu
ABSTRACT Virus infection activates host cellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which regulates diverse cellular activities related to cell growth, survival, and apoptosis. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), a major causative agent of postweaning multisystemic wasting syndrome, which is an emerging and important swine disease, can transiently induce the PI3K/Akt pathway in cultured cells at an early step during PCV2 infection. Activation of the PI3K/Akt signal was also induced by UV-irradiated PCV2, indicating that virus replication was not required for this induction. Inhibition of PI3K activation leads to reduced virus yield, which is associated with decreased viral DNA replication and lower virus protein expression. However, inhibition of PI3K activation greatly enhanced apoptotic responses as evidenced by the cleavage of poly-ADP ribose polymerase and caspase-3 as well as DNA fragmentation using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining during the early stage of PCV2 infection. Furthermore, the pancaspase inhibitor zVAD.fmk alleviated the reduction in Akt phosphorylation levels by inhibiting PI3K activation, indicating that the signaling promotes cell survival and thereby favors viral replication. These results reveal that an antiapoptotic role for the PI3K/Akt pathway induced by PCV2 infection to suppress premature apoptosis for improved virus growth after infection, extending our understanding of the molecular mechanism of PCV2 infection.
Virology | 2011
Li Wei; Shanshan Zhu; Guifeng Ruan; Lei Hou; Jing Wang; Bingquan Wang; Jue Liu
The Jun NH2-terminal kinase (JNK) which serves as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can activate JNK1/2 pathway in IBDV-infected cells dependent upon viral replication. IBDV-induced JNK1/2 activation causes its downstream target c-Jun phosphorylation, which kinetically paralleled JNK1/2 activation. Investigations into the mechanism of JNK1/2 regulation revealed that inhibition of JNK1/2 activation leads to reduced viral progeny release, which is associated with decreased viral transcription and lower virus protein expression, and thereby limiting apoptotic cell death as evidenced by blockage of Bax activation, cytochrome c release, and caspase activation. These data suggest that the JNK pathway plays an important role in the IBDV replication and contributes to virus-mediated changes in host cells.
Emerging Infectious Diseases | 2013
Li Wei; Shanshan Zhu; Xv Yan; Jing Wang; Chunyan Zhang; Shuhang Liu; Ruiping She; Fengjiao Hu; Rong Quan; Jue Liu
Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.
Virology | 2013
Li Wei; Shanshan Zhu; Jing Wang; Chunyan Zhang; Rong Quan; Xv Yan; Jue Liu
Porcine circovirus type 2 (PCV2), a major causative agent of postweaning multisystemic wasting syndrome which is an emerging and important swine disease, can induce apoptotic responses in vitro and in vivo. However, the molecular mechanism of PCV2-induced apoptosis is not well understood. Apoptosis signal-regulating kinase 1 (ASK1), serves as an upstream enzyme that activates the JNK and p38 MAPK pathways, has been shown to play a target role in the regulation of apoptosis. Here, we showed that PCV2 infection induced ASK1 phosphorylation which preceded activation of JNK1/2 and p38 signaling in the cultured cells, and that the phosphatidylinostol 3-kinase (PI3K)/Akt signaling triggered by PCV2 infection limited the extent of JNK1/2 and p38 activation and thereby apoptotic cell death. Furthermore, inhibition of JNK and p38 activation is associated with PI3K-dependent negative-regulation of ASK1 in the PCV2-infected cells. These results indicate an important regulatory role of ASK1 in PCV2-induced apoptotic responses.
PLOS ONE | 2016
Shanshan Zhu; Chunyan Zhang; Jing Wang; Li Wei; Rong Quan; Jiayu Yang; Xu Yan; Zixuan Li; Ruiping She; Fengjiao Hu; Jue Liu
In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2) Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF) pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection.
PLOS ONE | 2015
Chunyan Zhang; Shanshan Zhu; Li Wei; Xu Yan; Jing Wang; Rong Quan; Ruiping She; Fengjiao Hu; Jue Liu
The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases.
Scientific Reports | 2016
Rong Quan; Li Wei; Shanshan Zhu; Jing Wang; Yongchang Cao; Chunyi Xue; Xu Yan; Jue Liu
Many viruses exploit the host cell division cycle to favour their own growth. Here we demonstrated that porcine circovirus type 2 (PCV2), which is a major causative agent of an emerging and important swine disease complex, PCV2-associated diseases, caused G0/G1 cell cycle arrest through degradation of cyclin D1 and E followed by reduction of retinoblastoma phosphorylation in synchronized PCV2-infected cells dependent upon virus replication. This induction of G0/G1 cell cycle arrest promoted PCV2 replication as evidenced by increased viral protein expression and progeny virus production in the synchronized PCV2-infected cells. To delineate a mechanism of miRNAs in regulating PCV2-induced G0/G1 cell cycle arrest, we determined expression levels of some relevant miRNAs and found that only miR-15a but not miR-16, miR-21, and miR-34a was significantly changed in the PCV2-infected cells. We further demonstrated that upregulation of miR-15a promoted PCV2-induced G0/G1 cell cycle arrest via mediating cyclins D1 and E degradation, in which involves PCV2 growth. These results reveal that G0/G1 cell cycle arrest induced by PCV2 may provide favourable conditions for viral protein expression and progeny production and that miR-15a is implicated in PCV2-induced cell cycle control, thereby contributing to efficient viral replication.
Scientific Reports | 2016
Li Wei; Shanshan Zhu; Jing Wang; Rong Quan; Xu Yan; Zixue Li; Lei Hou; Naidong Wang; Yi Yang; Haijun Jiang; Jue Liu
Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection.
PLOS ONE | 2015
Hongzhuan Zhou; Shanshan Zhu; Rong Quan; Jing Wang; Li Wei; Bing Yang; Fuzhou Xu; Jinluo Wang; Fuyong Chen; Jue Liu
Unlike traditional virus isolation and sequencing approaches, sequence-independent amplification based viral metagenomics technique allows one to discover unexpected or novel viruses efficiently while bypassing culturing step. Here we report the discovery of the first Sicinivirus isolate (designated as strain JSY) of picornaviruses from commercial layer chickens in mainland China by using a viral metagenomics technique. This Sicinivirus isolate, which contains a whole genome of 9,797 nucleotides (nt) excluding the poly(A) tail, possesses one of the largest picornavirus genome so far reported, but only shares 88.83% and 82.78% of amino acid sequence identity to that of ChPV1 100C (KF979332) and Sicinivirus 1 strain UCC001 (NC_023861), respectively. The complete 939 nt 5′UTR of the isolate strain contains at least twelve stem-loop domains (A–L), representing the highest set of loops reported within Sicinivirus genus. The conserved barbell-like structure was also present in the 272 nt 3′UTR of the isolate as that in the 3′ UTR of Sicinivirus 1 strain UCC001. The 8,586 nt large open reading frame encodes a 2,862 amino acids polyprotein precursor. Moreover, Sicinivirus infection might be widely present in commercial chicken farms in Yancheng region of the Jiangsu Province as evidenced by all the tested stool samples from three different farms being positive (17/17) for Sicinivirus detection. This is the first report on identification of Sicinivirus in commercial layer chickens with a severe clinical disease in mainland China, however, further studies are needed to evaluate the pathogenic potential of this picornavirus in chickens.