Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shantanu H. Jathar is active.

Publication


Featured researches published by Shantanu H. Jathar.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol

Xuan Zhang; Christopher D. Cappa; Shantanu H. Jathar; Renee C. McVay; Joseph J. Ensberg; Michael J. Kleeman; John H. Seinfeld

Significance Atmospheric secondary organic aerosol (SOA) has important impacts on climate and air quality, yet models continue to have difficulty in accurately simulating SOA concentrations. Nearly all SOA models are tied to observations of SOA formation in laboratory chamber experiments. Here, a comprehensive analysis of new experimental results demonstrates that the formation of SOA in laboratory chambers may be substantially suppressed due to losses of SOA-forming vapors to chamber walls, which leads to underestimates of SOA in air-quality and climate models, especially in urban areas where anthropogenic SOA precursors dominate. This analysis provides a time-dependent framework for the interpretation of laboratory chamber experiments that will allow for development of parameterized models of SOA formation that are appropriate for use in atmospheric models. Secondary organic aerosol (SOA) constitutes a major fraction of submicrometer atmospheric particulate matter. Quantitative simulation of SOA within air-quality and climate models—and its resulting impacts—depends on the translation of SOA formation observed in laboratory chambers into robust parameterizations. Worldwide data have been accumulating indicating that model predictions of SOA are substantially lower than ambient observations. Although possible explanations for this mismatch have been advanced, none has addressed the laboratory chamber data themselves. Losses of particles to the walls of chambers are routinely accounted for, but there has been little evaluation of the effects on SOA formation of losses of semivolatile vapors to chamber walls. Here, we experimentally demonstrate that such vapor losses can lead to substantially underestimated SOA formation, by factors as much as 4. Accounting for such losses has the clear potential to bring model predictions and observations of organic aerosol levels into much closer agreement.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

Shantanu H. Jathar; Timothy D. Gordon; Christopher J. Hennigan; Havala O. T. Pye; George Pouliot; Peter J. Adams; Neil M. Donahue; Allen L. Robinson

Significance Secondary organic aerosol (SOA) formed from the atmospheric oxidation of gaseous combustion emissions is an important component of global fine-particle pollution, which influences the Earth’s energy budget and affects human health. However, existing models underpredict the amount of SOA measured in laboratory experiments and in the atmosphere. We analyze smog chamber and emissions data to demonstrate that unspeciated organics in combustion emissions are a major class of SOA precursors. We develop source-specific parameterizations for these emissions using surrogate chemical compounds. We find that unspeciated organics dominate SOA mass formed from combustion emissions in the United States; therefore, unspeciated organics must be included in models to simulate ambient fine particulate matter concentrations. Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.


Environmental Science & Technology | 2014

Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor

Daniel S. Tkacik; Andrew T. Lambe; Shantanu H. Jathar; Xiang Li; Albert A. Presto; Yunliang Zhao; D. R. Blake; Simone Meinardi; John T. Jayne; Philip Croteau; Allen L. Robinson

Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.


Environmental Science & Technology | 2013

Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

Timothy D. Gordon; Daniel S. Tkacik; Albert A. Presto; M. Zhang; Shantanu H. Jathar; Ngoc T. Nguyen; John Massetti; Tin Truong; Pablo Cicero-Fernandez; Christine Maddox; Paul Rieger; Sulekha Chattopadhyay; Hector Maldonado; M. Matti Maricq; Allen L. Robinson

Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.


Environmental Science & Technology | 2013

Secondary Organic Aerosol Formation from Photo-Oxidation of Unburned Fuel: Experimental Results and Implications for Aerosol Formation from Combustion Emissions

Shantanu H. Jathar; Marissa A. Miracolo; Daniel S. Tkacik; Neil M. Donahue; Peter J. Adams; Allen L. Robinson

We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters.


Science | 2018

Volatile chemical products emerging as largest petrochemical source of urban organic emissions

Brian C. McDonald; Joost A. de Gouw; J. B. Gilman; Shantanu H. Jathar; Ali Akherati; Christopher D. Cappa; Jose L. Jimenez; Julia Lee-Taylor; Patrick L. Hayes; S. A. McKeen; Yu Yan Cui; S.-W. Kim; D. R. Gentner; Gabriel Isaacman-VanWertz; Allen H. Goldstein; Robert A. Harley; G. J. Frost; James M. Roberts; Thomas B. Ryerson; M. Trainer

Air pollution evolution Transport-derived emissions of volatile organic compounds (VOCs) have decreased owing to stricter controls on air pollution. This means that the relative importance of chemicals in pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products has increased. McDonald et al. show that these volatile chemical products now contribute fully one-half of emitted VOCs in 33 industrialized cities (see the Perspective by Lewis). Thus, the focus of efforts to mitigate ozone formation and toxic chemical burdens need to be adjusted. Science, this issue p. 760; see also p. 744 Chemical products contribute as much organic air pollution as transportation emissions in many cities. A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.


Scientific Reports | 2016

Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

Bin Zhao; Shuxiao Wang; Neil M. Donahue; Shantanu H. Jathar; Xiaofeng Huang; Wenjing Wu; Jiming Hao; Allen L. Robinson

Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.


Environmental Science & Technology | 2012

Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

Marissa A. Miracolo; Greg T. Drozd; Shantanu H. Jathar; Albert A. Presto; Eric M. Lipsky; Edwin Corporan; Allen L. Robinson

A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.


Atmospheric Chemistry and Physics | 2016

Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions

Shantanu H. Jathar; Matthew Woody; Havala O. T. Pye; Kirk R. Baker; Allen L. Robinson

Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30–40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.


Geophysical Research Letters | 2016

Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic acid (HNCO)

Michael F. Link; Beth Friedman; R. Fulgham; Patrick Brophy; Abril A. Galang; Shantanu H. Jathar; P. R. Veres; James M. Roberts; Delphine K. Farmer

Isocyanic acid (HNCO) is a well-known air pollutant that affects human health. Biomass burning, smoking, and combustion engines are known HNCO sources, but recent studies suggest that secondary production in the atmosphere may also occur. We directly observed photochemical production of HNCO from the oxidative aging of diesel exhaust during the Diesel Exhaust Fuel and Control experiments at Colorado State University using acetate ionization time-of-flight mass spectrometry. Emission ratios of HNCO were enhanced, after 1.5 days of simulated atmospheric aging, from 50 to 230 mg HNCO/kg fuel at idle engine operating conditions. Engines operated at higher loads resulted in less primary and secondary HNCO formation, with emission ratios increasing from 20 to 40 mg HNCO/kg fuel under 50% load engine operating conditions. These results suggest that photochemical sources of HNCO could be more significant than primary sources in urban areas.

Collaboration


Dive into the Shantanu H. Jathar's collaboration.

Top Co-Authors

Avatar

Allen L. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Friedman

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Michael F. Link

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Peter J. Adams

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Neil M. Donahue

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Abril A. Galang

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge