Shao-Ping Liu
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shao-Ping Liu.
Biomaterials | 2013
Fu-Bing Wang; Yuan Rong; Min Fang; Jing-Ping Yuan; Chun-Wei Peng; Shao-Ping Liu; Yan Li
Metastatic recurrence is the most important biological behavior of hepatocellular carcinoma (HCC) and the main cause of treatment failure. Early prediction of metastasis is currently impossible due to the lack of specific molecular probes to recognize metastatic HCC cells. Aptamers have recently emerged as promising potential molecular probes for biomedical applications. Two well-matched HCC cell lines including HCCLM9 with high metastatic potential and MHCC97-L with low metastatic potential, were used to select aptamers for HCC metastasis. With a whole-cell-SELEX strategy, in which HCCLM9 cells were used as target cells and MHCC97-L cells as subtractive cell, 6 potential aptamers had been generated. Detailed study on selected aptamer LY-1 revealed that it could bind metastatic HCC cells with high affinity and specificity, not only in cells culture and animal models of HCC metastasis, but also in clinical HCC specimens. Moreover, the aptamer LY-1 and magnetic particles conjugates could efficiently capture the HCC cells from complex mixture whole blood. These studies demonstrated that this HCC specific aptamer LY-1 could be a promising molecular probe to recognize metastatic HCC cells.
Biomaterials | 2011
Chuang Chen; Shengrong Sun; Yi-Ping Gong; Chu-Bo Qi; Chun-Wei Peng; Xue-Qin Yang; Shao-Ping Liu; Jun Peng; Shan Zhu; Ming-Bai Hu; Dai-Wen Pang; Yan Li
The emerging molecular breast cancer (BC) classification based on key molecules, including hormone receptors (HRs), and human epidermal growth factor receptor 2 (HER2) has been playing an important part of clinical practice guideline. The current molecular classification mainly based on their fingerprints, however, could not provide enough essential information for treatment decision making. The molecular information on both patterns and quantities could be more helpful to heterogeneities understanding for BC personalized medicine. Here we conduct quantitative determination of HRs and HER2 by quantum dots (QDs)-based quantitative spectral analysis, which had excellent consistence with traditional method. Moreover, we establish a new molecular classification system of BC by integrating the quantitative information of HER2 and HRs, which could better reveal BC heterogeneity and identify 5 molecular subtypes with different 5-year prognosis. Furthermore, the emerging 5 molecular subtypes based on simple quantitative molecules information could be as informative as multi-genes analysis in routine practice, and might help formulate a more personalized comprehensive therapy strategy and prognosis prediction.
Biochemical and Biophysical Research Communications | 2011
Xiu-Li Liu; Chun-Wei Peng; Chuang Chen; Xue-Qin Yang; Ming-Bai Hu; He-Shun Xia; Shao-Ping Liu; Dai-Wen Pang; Yan Li
It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.
Cancer | 2012
Li-Hua Shao; Shao-Ping Liu; Jin-Xuan Hou; Yan-Hua Zhang; Chun-Wei Peng; Yan-Jun Zhong; Xiong Liu; Xiu-Li Liu; Ya-ping Hong; Raymond A. Firestone; Yan Li
Doxorubicin (Adriamycin) is effective in gastric cancer treatment, but with severe dose‐dependent toxicities. A novel prodrug of doxorubicin (Ac‐Phe‐Lys‐PABC‐ADM) is designed to deliver free doxorubicin relying on cathepsin B and reduce side effects. The authors examined the antitumor effect and toxicities of Ac‐Phe‐Lys‐PABC‐ADM against gastric cancer peritoneal carcinomatosis.
International Journal of Nanomedicine | 2011
Xue-Qin Yang; Chuang Chen; Chun-Wei Peng; Jin-Xuan Hou; Shao-Ping Liu; Chu-Bo Qi; Yi-Ping Gong; Xiaobo Zhu; Dai-Wen Pang; Yan Li
Background The epidermal growth factor receptor (EGFR) is a promising therapeutic target in cancer, but its clinical value in breast cancer remains controversial. Our previous studies have found that quantitative analysis of biomarkers with quantum dot-based nanotechnology had better detection performance than conventional immunohistochemistry. The present study was undertaken to investigate the prognostic value of EGFR in breast cancer using quantum dot-based quantitative spectral analysis. Methods EGFR expression in 65 breast cancer specimens was detected by immunohistochemistry and quantum dot-immunohistochemistry, and comparisons were made between the two methods. EGFR expression in tissue microarrays of 240 breast cancer patients was then detected by quantum dot-immunohistochemistry and spectral analysis. The prognostic value of EGFR immunofluorescence area (EGFR area) for five-year recurrence-free survival was investigated. Results The same antigen localization, high correlation of staining rates (r = 0.914), and high agreement of measurement (κ = 0.848) of EGFR expression in breast cancer were found by quantum dot-immunohistochemistry and immunohistochemistry. The EGFR area showed significant differences by tumor grade, lymph node status, HER2 status, and hormone receptor status (all P < 0.05). Patients in the large EGFR area (≥30.51) group had a significantly higher five-year recurrence rate (47.2% versus 27.4%, P = 0.002) and worse five-year recurrence-free survival (log-rank test, P = 0.0015) than those in the small EGFR area (<30.51) group. In the subgroups, EGFR area was an independent prognosticator in the HER2-positive and lymph node-positive subgroups. Conclusion Quantum dot-based quantitative detection demonstrates the prognostic value of EGFR area in the HER2-positive and lymph node-positive subgroups of invasive breast cancer.
Journal of Translational Medicine | 2013
Qun Wang; Yan-Jun Zhong; Jing-Ping Yuan; Li-Hua Shao; Jue Zhang; Li Tang; Shao-Ping Liu; Ya-ping Hong; Raymond A. Firestone; Yan bo Li
BackgroundThis study was to investigate the effects and safety of cathepsin B-cleavable doxorubicin (DOX)-prodrug (PDOX) for targeting therapy of metastatic human hepatocellular carcinoma (HCC) using DOX as a positive control drug.MethodsThe orthotopic nude mice model of highly metastatic HCC was established and the animals were randomized and treated with PDOX, DOX and saline, respectively. Hematology, biochemistry and tumor markers were studied. At autopsy, liver tumor weight and size, ascites, abdominal lymph nodes metastases, experimental peritoneal carcinomatosis index (ePCI), and tumor-host body weight ratio were investigated. Immunohistochemical studies and western blotting were done to investigate key molecules involved in the mechanism of action.ResultsCompared with Control, both PDOX and DOX could similarly and significantly reduce liver tumor weight and tumor volume by over 40%, ePCI values, retroperitoneal lymph node metastases and lung metastases and serum AFP levels (P < 0.05). The PDOX group had significantly higher WBC than the DOX group (P < 0.05), and higher PLT than Control (P < 0.05). Serum BUN and Cr levels were lower in the PDOX group than DOX and Control groups (P < 0.05). Compared with Control, DOX increased CK and CK-MB; while PDOX decreased CK compared with DOX (P < 0.05). Multiple spotty degenerative changes of the myocardium were observed in DOX-treated mice, but not in the Control and PDOX groups. PDOX could significantly reduce the Ki-67 positive rate of tumor cells, compared with DOX and Control groups. PDOX produced the effects at least via the ERK pathway.ConclusionCompared with DOX, PDOX may have better anti-metastatic efficacy and reduced side effects especially cardio-toxicities in this HCC model.
Oncotarget | 2016
Yuan Rong; Hao Chen; Xue-Feng Zhou; Chang-Qing Yin; Bi-Cheng Wang; Chun-Wei Peng; Shao-Ping Liu; Fu-Bing Wang
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers due to its ability of invasion and metastasis. Thus, the approaches to identify potential compounds that inhibit invasion and metastasis of HCC are critical for treatment of this disease. In the present study, we used HCCLM9 cells with high metastatic potential and MHCC97L with low metastatic potential as a model system to study the molecular mechanisms of HCC metastasis. By applying cell- Systematic Evolution of Ligands by Exponential enrichment (SELEX) against living cells, we used HCCLM9 as target cells and MHCC97L cells as control to screen a group of HCC metastasis- and cell-specific DNA aptamers. One of selected aptamers, LY-1, could specifically bind to metastatic HCC with a dissociation constant (Kd) in nanomolar range. In vitro studies demonstrated that LY-1 can recognize and bind to membrane protein of metastatic HCC cells. Furthermore, QD605 labeled LY-1 aptamer could recognize HCC cells in both local liver cancer tissues and pulmonary metastatic sites in a xenograft model of HCC with pulmonary metastasis. Further biochemical and immunostaining studies showed that LY-1 could selectively bind to a subpopulation of more metastatic cells in HCCLM9 cells, which express more CK19 and vimentin. Finally, treatment of highly metastatic cells with LY-1 led to reduced migration and invasiveness of HCCLM9 cells in vitro and suppression of xenograft growth in vivo. Taken together, the present study demonstrated the tumor targeting and tumor suppressive effects of LY-1, which could be a promising molecular probe for metastatic HCC and a potential candidate of chemotherapy for metastatic HCC.
Oncotarget | 2015
Chun-Hui Yuan; Xiao-Ming Sun; Cheng-Liang Zhu; Shao-Ping Liu; Long Wu; Hao Chen; Mao-Hui Feng; Ke Wu; Fu-Bing Wang
CD8+ T cell-mediated immune response plays an important role in inhibiting progression of hepatocellular carcinoma (HCC). For strategic immunotherapy, it is critical to understand why some of the tumor cells escape from this immune attack. In this study, we investigated how HCC cells alter endogenous anti-tumor immunity and their related signaling pathways. We found that HCC cells, both in vitro and in vivo, substantially secret and express amphiregulin (AR). AR in turn activates immunosuppressive function of intratumoral CD4+Foxp3+ regulatory T cells (Tregs), a major inhibitor of CD8+ T cells. Using either lentiviral siRNA, or AR neutralizing antibody, we blocked the expression and function of AR to test the specificity of AR mediated activation of Tregs, Biochemical and cell biology studies were followed and confirmed that blocking of AR inhibited Tregs activation. In addition, we found that AR can trigger the activation of rapamycin complex 1(mTORC1) signaling in Tregs. The mTORC1 inhibitor rapamycin treatment led to compromise Treg function and resulted in enhancing anti-tumor function of CD8+ T cells. Blocking AR/EGFR signaling in Tregs with Gefitinib also enhanced anti-tumor immunity and decreased tumor size in a mouse xenograft tumor model. Taken together, our study suggested a novel mechanism of functional interaction between HCC and Tregs for regulating anti-tumor function of CD8+ T cells.
Journal of Huazhong University of Science and Technology-medical Sciences | 2013
Min Fang; Chun-Wei Peng; Shao-Ping Liu; Jing-Ping Yuan; Yan Li
This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with serum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morphological basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully established, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based molecular imaging, it can help to better investigate the invasive behaviors of HCC cells.SummaryThis study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with serum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morphological basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully established, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based molecular imaging, it can help to better investigate the invasive behaviors of HCC cells.
Oncotarget | 2018
Jue Zhang; Jing-Ping Yuan; Qun Wang; Li-Hua Shao; Shao-Ping Liu; Raymond A. Firestone; Ya-ping Hong; Ji-guo Li; Yan-chao Xin; Yan Li
Background To compare the efficacy and toxicity of peptide-doxorubicin (PDOX) and doxorubicin (DOX) on nude mice models of human gastric cancer. Results Both PDOX and DOX could significantly inhibit tumor growth compared with Control (P < 0.05) in both subcutaneous and orthotopic models. Animal survival was much better in PDOX group than DOX group. In peripheral blood test, PDOX group had significantly higher levels of platelets than the Control (P < 0.05), and lymphocyte lower than Control (P < 0.05). There were no significant differences on liver, kidney and cardiac function parameters among three groups (P > 0.05). Immunohistochemistry showed that treatment groups had much higher Tunel than Control (P < 0.05), and PDOX had significantly lower Ki-67 than doxorubicin and Control group (P < 0.01). Western blotting showed that PDOX caused much higher expressions of P53, P21, Aparf-1, pro- and cleaved-caspase 3, compared with DOX. Conclusion Compared with DOX, PDOX has increased effects but much decreased toxicity in treating animal model of gastric cancer. Materials and Methods Animals in subcutaneous model were randomized into Control, doxorubicin, PDOX-L, PDOX-M, and PDOX-H groups. Animals in surgical orthotopic implantation model were randomized into Control, doxorubicin and, peptide-doxorubicin groups. The animals were treated, monitored and examined following a set protocol.