Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shao-Wu Zhang is active.

Publication


Featured researches published by Shao-Wu Zhang.


Amino Acids | 2008

Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies

Shao-Wu Zhang; Yun-Long Zhang; Hui-Fang Yang; Chun-Hui Zhao; Quan Pan

The rapidly increasing number of sequence entering into the genome databank has called for the need for developing automated methods to analyze them. Information on the subcellular localization of new found protein sequences is important for helping to reveal their functions in time and conducting the study of system biology at the cellular level. Based on the concept of Chou’s pseudo-amino acid composition, a series of useful information and techniques, such as residue conservation scores, von Neumann entropies, multi-scale energy, and weighted auto-correlation function were utilized to generate the pseudo-amino acid components for representing the protein samples. Based on such an infrastructure, a hybridization predictor was developed for identifying uncharacterized proteins among the following 12 subcellular localizations: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracell, Golgi apparatus, lysosome, mitochondria, nucleus, peroxisome, plasma membrane, and vacuole. Compared with the results reported by the previous investigators, higher success rates were obtained, suggesting that the current approach is quite promising, and may become a useful high-throughput tool in the relevant areas.


Bioinformatics | 2003

Classification of protein quaternary structure with support vector machine

Shao-Wu Zhang; Quan Pan; Hong-Cai Zhang; Yun-Long Zhang; Hai-Yu Wang

MOTIVATION Since the gap between sharply increasing known sequences and slow accumulation of known structures is becoming large, an automatic classification process based on the primary sequences and known three-dimensional structure becomes indispensable. The classification of protein quaternary structure based on the primary sequences can provide some useful information for the biologists. So a fully automatic and reliable classification system is needed. This work tries to look for the effective methods of extracting attribute and the algorithm for classifying the quaternary structure from the primary sequences. RESULTS Both of the support vector machine (SVM) and the covariant discriminant algorithms have been first introduced to predict quaternary structure properties from the protein primary sequences. The amino acid composition and the auto-correlation functions based on the amino acid index profile of the primary sequence have been taken into account in the algorithms. We have analyzed 472 amino acid indices and selected the four amino acid indices as the examples, which have the best performance. Thus the five attribute parameter data sets (COMP, FASG, NISK, WOLS and KYTJ) were established from the protein primary sequences. The COMP attribute data set is composed of amino acid composition, and the FASG, NISK, WOLS and KYTJ attribute data sets are composed of the amino acid composition and the auto-correlation functions of the corresponding amino acid residue index. The overall accuracies of SVM are 78.5, 87.5, 83.2, 81.7 and 81.9%, respectively, for COMP, FASG, NISK, WOLS and KYTJ data sets in jackknife test, which are 19.6, 7.8, 15.5, 13.1 and 15.8%, respectively, higher than that of the covariant discriminant algorithm in the same test. The results show that SVM may be applied to discriminate between the primary sequences of homodimers and non-homodimers and the two protein sequence descriptors can reflect the quaternary structure information. Compared with previous Robert Garians investigation, the performance of SVM is almost equal to that of the Decision tree models, and the methods of extracting feature vector from the primary sequences are superior to Roberts binning function method. AVAILABILITY Programs are available on request from the authors.


Amino Acids | 2008

Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach

Shao-Wu Zhang; Wei Chen; Feng Yang; Quan Pan

In the protein universe, many proteins are composed of two or more polypeptide chains, generally referred to as subunits, which associate through noncovalent interactions and, occasionally, disulfide bonds to form protein quaternary structures. It has long been known that the functions of proteins are closely related to their quaternary structures; some examples include enzymes, hemoglobin, DNA polymerase, and ion channels. However, it is extremely labor-expensive and even impossible to quickly determine the structures of hundreds of thousands of protein sequences solely from experiments. Since the number of protein sequences entering databanks is increasing rapidly, it is highly desirable to develop computational methods for classifying the quaternary structures of proteins from their primary sequences. Since the concept of Chou’s pseudo amino acid composition (PseAAC) was introduced, a variety of approaches, such as residue conservation scores, von Neumann entropy, multiscale energy, autocorrelation function, moment descriptors, and cellular automata, have been utilized to formulate the PseAAC for predicting different attributes of proteins. Here, in a different approach, a sequence-segmented PseAAC is introduced to represent protein samples. Meanwhile, multiclass SVM classifier modules were adopted to classify protein quaternary structures. As a demonstration, the dataset constructed by Chou and Cai [(2003) Proteins 53:282–289] was adopted as a benchmark dataset. The overall jackknife success rates thus obtained were 88.2–89.1%, indicating that the new approach is quite promising for predicting protein quaternary structure.


BMC Bioinformatics | 2010

PPLook: an automated data mining tool for protein-protein interaction

Shao-Wu Zhang; Yao-Jun Li; Li Charlie Xia; Quan Pan

BackgroundExtracting and visualizing of protein-protein interaction (PPI) from text literatures are a meaningful topic in protein science. It assists the identification of interactions among proteins. There is a lack of tools to extract PPI, visualize and classify the results.ResultsWe developed a PPI search system, termed PPLook, which automatically extracts and visualizes protein-protein interaction (PPI) from text. Given a query protein name, PPLook can search a dataset for other proteins interacting with it by using a keywords dictionary pattern-matching algorithm, and display the topological parameters, such as the number of nodes, edges, and connected components. The visualization component of PPLook enables us to view the interaction relationship among the proteins in a three-dimensional space based on the OpenGL graphics interface technology. PPLook can also provide the functions of selecting protein semantic class, counting the number of semantic class proteins which interact with query protein, counting the literature number of articles appearing the interaction relationship about the query protein. Moreover, PPLook provides heterogeneous search and a user-friendly graphical interface.ConclusionsPPLook is an effective tool for biologists and biosystem developers who need to access PPI information from the literature. PPLook is freely available for non-commercial users at http://meta.usc.edu/softs/PPLook.


PLOS Computational Biology | 2016

Inference of Gene Regulatory Network Based on Local Bayesian Networks

Fei Liu; Shao-Wu Zhang; Wei-Feng Guo; Ze-Gang Wei; Luonan Chen

The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce the computational cost of BN due to much smaller sizes of local GRNs, but also identify the directions of the regulations.


Bioinformatics | 2016

A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data

Xiaodong Cui; Jia Meng; Shao-Wu Zhang; Yidong Chen; Yufei Huang

Motivation: N6-methyl-adenosine (m6A) is the most prevalent mRNA methylation but precise prediction of its mRNA location is important for understanding its function. A recent sequencing technology, known as Methylated RNA Immunoprecipitation Sequencing technology (MeRIP-seq), has been developed for transcriptome-wide profiling of m6A. We previously developed a peak calling algorithm called exomePeak. However, exomePeak over-simplifies data characteristics and ignores the reads’ variances among replicates or reads dependency across a site region. To further improve the performance, new model is needed to address these important issues of MeRIP-seq data. Results: We propose a novel, graphical model-based peak calling method, MeTPeak, for transcriptome-wide detection of m6A sites from MeRIP-seq data. MeTPeak explicitly models read count of an m6A site and introduces a hierarchical layer of Beta variables to capture the variances and a Hidden Markov model to characterize the reads dependency across a site. In addition, we developed a constrained Newton’s method and designed a log-barrier function to compute analytically intractable, positively constrained Beta parameters. We applied our algorithm to simulated and real biological datasets and demonstrated significant improvement in detection performance and robustness over exomePeak. Prediction results on publicly available MeRIP-seq datasets are also validated and shown to be able to recapitulate the known patterns of m6A, further validating the improved performance of MeTPeak. Availability and implementation: The package ‘MeTPeak’ is implemented in R and C ++, and additional details are available at https://github.com/compgenomics/MeTPeak Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


BioMed Research International | 2016

Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features.

Xiaodong Cui; Zhen Wei; Lin Zhang; Hui Liu; Lei Sun; Shao-Wu Zhang; Yufei Huang; Jia Meng

Biological features, such as genes and transcription factor binding sites, are often denoted with genome-based coordinates as the genomic features. While genome-based representation is usually very effective in correlating various biological features, it can be tedious to examine the relationship between RNA-related genomic features and the landmarks of RNA transcripts with existing tools due to the difficulty in the conversion between genome-based coordinates and RNA-based coordinates. We developed here an open source Guitar R/Bioconductor package for sketching the transcriptomic view of RNA-related biological features represented by genome based coordinates. Internally, Guitar package extracts the standardized RNA coordinates with respect to the landmarks of RNA transcripts, with which hundreds of millions of RNA-related genomic features can then be efficiently analyzed within minutes. We demonstrated the usage of Guitar package in analyzing posttranscriptional RNA modifications (5-methylcytosine and N6-methyladenosine) derived from high-throughput sequencing approaches (MeRIP-Seq and RNA BS-Seq) and show that RNA 5-methylcytosine (m5C) is enriched in 5′UTR. The newly developed Guitar R/Bioconductor package achieves stable performance on the data tested and revealed novel biological insights. It will effectively facilitate the analysis of RNA methylation data and other RNA-related biological features in the future.


BMC Bioinformatics | 2017

QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model

Lian Liu; Shao-Wu Zhang; Yufei Huang; Jia Meng

BackgroundAs a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now available in the form of count-based data, with which it is often of interests to study the dynamics at epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately estimated due to their low expression level, making differential RNA methylation analysis a difficult task.ResultsWe present QNB, a statistical approach for differential RNA methylation analysis with count-based small-sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial distributions with their variances and means linked by local regressions, and in the way, the input control samples are also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only for estimating the background, QNB uses a more robust estimator for gene expression by combining information from both input and IP samples, which could largely improve the testing performance for very lowly expressed genes.ConclusionQNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications, including but not limited to RNA bisulfite sequencing, m1A-Seq, Par-CLIP, RIP-Seq, etc.


PLOS Computational Biology | 2016

m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks

Songyao Zhang; Shao-Wu Zhang; Lian Liu; Jia Meng; Yufei Huang

As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine (m6A) has been shown to possess important post-transcriptional regulatory functions. However, the regulatory mechanisms and functional circuits of m6A are still largely elusive. To help unveil the regulatory circuitry mediated by mRNA m6A methylation, we develop here m6A-Driver, an algorithm for predicting m6A-driven genes and associated networks, whose functional interactions are likely to be actively modulated by m6A methylation under a specific condition. Specifically, m6A-Driver integrates the PPI network and the predicted differential m6A methylation sites from methylated RNA immunoprecipitation sequencing (MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a consensus m6A-driven network of m6A-driven genes. To evaluate the performance, we applied m6A-Driver to build the context-specific m6A-driven networks for 4 known m6A (de)methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m6A-Driver can robustly and efficiently identify m6A-driven genes that are functionally more enriched and associated with higher degree of differential expression than differential m6A methylated genes. Pathway analysis of the constructed context-specific m6A-driven gene networks further revealed the regulatory circuitry underlying the dynamic interplays between the methyltransferases and demethylase at the epitranscriptomic layer of gene regulation.


Proteome Science | 2011

Identification of protein-RNA interaction sites using the information of spatial adjacent residues

Wei Chen; Shao-Wu Zhang; Yong-Mei Cheng; Quan Pan

BackgroundProtein-RNA interactions play an important role in numbers of fundamental cellular processes such as RNA splicing, transport and translation, protein synthesis and certain RNA-mediated enzymatic processes. The more knowledge of Protein-RNA recognition can not only help to understand the regulatory mechanism, the site-directed mutagenesis and regulation of RNA–protein complexes in biological systems, but also have a vitally effecting for rational drug design.ResultsBased on the information of spatial adjacent residues, novel feature extraction methods were proposed to predict protein-RNA interaction sites with SVM-KNN classifier. The total accuracies of spatial adjacent residue profile feature and spatial adjacent residues weighted accessibility solvent area feature are 78%, 67.07% respectively in 5-fold cross-validation test, which are 1.4%, 3.79% higher than that of sequence neighbour residue profile feature and sequence neighbour residue accessibility solvent area feature.ConclusionsThe results indicate that the performance of feature extraction method using the spatial adjacent information is superior to the sequence neighbour information approach. The performance of SVM-KNN classifier is little better than that of SVM. The feature extraction method of spatial adjacent information with SVM-KNN is very effective for identifying protein-RNA interaction sites and may at least play a complimentary role to the existing methods.

Collaboration


Dive into the Shao-Wu Zhang's collaboration.

Top Co-Authors

Avatar

Jia Meng

Xi'an Jiaotong-Liverpool University

View shared research outputs
Top Co-Authors

Avatar

Yufei Huang

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Lin Zhang

China University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Cui

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Hui Liu

China University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Quan Pan

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Lian Liu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Yidong Chen

Greehey Children's Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Luonan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

North China University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge