Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shao-Xing Dai is active.

Publication


Featured researches published by Shao-Xing Dai.


Nutrients | 2015

Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency

Wen-Xing Li; Shao-Xing Dai; Jun-Juan Zheng; Jia-Qian Liu; Jing-Fei Huang

Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28–75 were enrolled in this study from September 2005–December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk.


Scientific Reports | 2016

In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

Shao-Xing Dai; Wen-Xing Li; Fei-Fei Han; Yi-Cheng Guo; Jun-Juan Zheng; Jia-Qian Liu; Qian Wang; Yue-Dong Gao; Gong-Hua Li; Jing-Fei Huang

There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.


PLOS ONE | 2014

Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro.

Rui-Rui Wang; Qing-Hua Yang; Rong-Hua Luo; You-Mei Peng; Shao-Xing Dai; Xing-Jie Zhang; Huan Chen; Xue-Qing Cui; Ya-Juan Liu; Jing-Fei Huang; Jun-Biao Chang; Yong-Tang Zheng

Azvudine is a novel nucleoside reverse transcriptase inhibitor with antiviral activity on human immunodeficiency virus, hepatitis B virus and hepatitis C virus. Here we reported the in vitro activity of azvudine against HIV-1 and HIV-2 when used alone or in combination with other antiretroviral drugs and its drug resistance features. Azvudine exerted highly potent inhibition on HIV-1 (EC50s ranging from 0.03 to 6.92 nM) and HIV-2 (EC50s ranging from 0.018 to 0.025 nM). It also showed synergism in combination with six approved anti-HIV drugs on both C8166 and PBMC. In combination assay, the concentrations of azvudine used were 1000 or 500 fold lower than other drugs. Azvudine also showed potent inhibition on NRTI-resistant strains (L74V and T69N). Although M184V caused 250 fold reduction in susceptibility, azvudine remained active at nanomolar range. In in vitro induced resistant assay, the frequency of M184I mutation increased with induction time which suggests M184I as the key mutation in azvudine treatment. As control, lamivudine treatment resulted in a higher frequency of M184I/V given the same induction time and higher occurrence of M184V was found. Molecular modeling analysis suggests that steric hindrance is more pronounced in mutant M184I than M184V due to the azido group of azvudine. The present data demonstrates the potential of azvudine as a complementary drug to current anti-HIV drugs. M184I should be the key mutation, however, azvudine still remains active on HIV-1LAI-M184V at nanomolar range.


BioMed Research International | 2013

Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

Ai-Di Zhang; Shao-Xing Dai; Jing-Fei Huang

With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissues functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.


Oncotarget | 2017

Comprehensive tissue-specific gene set enrichment analysis and transcription factor analysis of breast cancer by integrating 14 gene expression datasets

Wen-Xing Li; Kan He; Ling Tang; Shao-Xing Dai; Gong-Hua Li; Wen-Wen Lv; Yi-Cheng Guo; Sanqi An; Guoying Wu; Dahai Liu; Jing-Fei Huang

Breast cancer is the most commonly diagnosed malignancy in women. Several key genes and pathways have been proven to correlate with breast cancer pathology. This study sought to explore the differences in key transcription factors (TFs), transcriptional regulation networks and dysregulated pathways in different tissues in breast cancer. We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated analysis in three different tissues including breast, blood and saliva. The results showed that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we identified several unreported tissue-specific TFs that may contribute to breast cancer, including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis processes. Among these pathways, the breast tissue showed the most serious impairment and the blood tissue showed a relatively moderate damage, whereas the saliva tissue was almost unaffected. This study could be helpful for future biomarker discovery, drug design, and therapeutic and predictive applications in breast cancers.


Journal of Alzheimer's Disease | 2017

Meta-Analysis of Parkinson’s Disease and Alzheimer’s Disease Revealed Commonly Impaired Pathways and Dysregulation of NRF2-Dependent Genes

Qian Wang; Wen-Xing Li; Shao-Xing Dai; Yi-Cheng Guo; Fei-Fei Han; Jun-Juan Zheng; Gong-Hua Li; Jing-Fei Huang

Many lines of evidence suggest that Parkinsons disease (PD) and Alzheimers disease (AD) have common characteristics, such as mitochondrial dysfunction and oxidative stress. As the underlying molecular mechanisms are unclear, we perform a meta-analysis with 9 microarray datasets of PD studies and 7 of AD studies to explore it. Functional enrichment analysis revealed that PD and AD both showed dysfunction in the synaptic vesicle cycle, GABAergic synapses, phagosomes, oxidative phosphorylation, and TCA cycle pathways, and AD had more enriched genes. Comparing the differentially expressed genes between AD and PD, we identified 54 common genes shared by more than six tissues. Among them, 31 downregulated genes contained the antioxidant response element (ARE) consensus sequence bound by NRF2. NRF2 is a transcription factor, which protects cells against oxidative stress through coordinated upregulation of ARE-driven genes. To our surprise, although NRF2 was upregulated, its target genes were all downregulated. Further exploration found that MAFF was upregulated in all tissues and significantly negatively correlated with the 31 NRF2-dependent genes in diseased conditions. Previous studies have demonstrated over-expressed small MAFs can form homodimers and act as transcriptional repressors. Therefore, MAFF might play an important role in dysfunction of NRF2 regulatory network in PD and AD.


Clinical Laboratory | 2017

Folate Deficiency and Gene Polymorphisms of MTHFR, MTR and MTRR Elevate the Hyperhomocysteinemia Risk.

Wen-Xing Li; Fei Cheng; A-Jie Zhang; Shao-Xing Dai; Gong-Hua Li; Wen-Wen Lv; Tao Zhou; Qiang Zhang; Hong Zhang; Tao Zhang; Fang Liu; Dahai Liu; Jing-Fei Huang

BACKGROUND Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVDs). We aimed to investigate the joint effect of homocysteine metabolism gene polymorphisms, as well as the folate deficiency on the risk of HHcy in a Chinese hypertensive population. METHODS This study enrolled 480 hypertensive patients aged 28 - 75 from six hospitals in different Chinese regions from 9/2005 - 12/2005. Known genotypes of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G were detected by PCRRFLP methods. Serum Hcy was measured by high-performance liquid chromatography and serum folate was measured by chemiluminescent immunoassay. RESULTS MTHFR C677T and MTR A2756G can independently elevate the risk of HHcy (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA, p = 0.026, respectively), whereas MTHFR A1298C decreased HHcy risk (AC + CC vs. AA, p < 0.001) and showed a protective effect against HHcy risk. Importantly, the joint effect of these risk genotypes showed significantly higher odds of HHcy than non-risk genotypes, especially the patients with four risk genotypes. It is noteworthy that this deleterious effect was aggravated by folate deficiency. These findings were verified by generalized multifactor dimensionality reduction model (p = 0.001) and a cumulative effects model (p < 0.001). CONCLUSIONS We have first demonstrated that the joint effect of homocysteine metabolism gene polymorphisms and folate deficiency lead to dramatic elevations in the HHcy risk.


Journal of Alzheimer's Disease | 2016

Integrated Analysis of Alzheimer's Disease and Schizophrenia Dataset Revealed Different Expression Pattern in Learning and Memory.

Wen-Xing Li; Shao-Xing Dai; Jia-Qian Liu; Qian Wang; Gong-Hua Li; Jing-Fei Huang

Alzheimers disease (AD) and schizophrenia (SZ) are both accompanied by impaired learning and memory functions. This study aims to explore the expression profiles of learning or memory genes between AD and SZ. We downloaded 10 AD and 10 SZ datasets from GEO-NCBI for integrated analysis. These datasets were processed using RMA algorithm and a global renormalization for all studies. Then Empirical Bayes algorithm was used to find the differentially expressed genes between patients and controls. The results showed that most of the differentially expressed genes were related to AD whereas the gene expression profile was little affected in the SZ. Furthermore, in the aspects of the number of differentially expressed genes, the fold change and the brain region, there was a great difference in the expression of learning or memory related genes between AD and SZ. In AD, the CALB1, GABRA5, and TAC1 were significantly downregulated in whole brain, frontal lobe, temporal lobe, and hippocampus. However, in SZ, only two genes CRHBP and CX3CR1 were downregulated in hippocampus, and other brain regions were not affected. The effect of these genes on learning or memory impairment has been widely studied. It was suggested that these genes may play a crucial role in AD or SZ pathogenesis. The different gene expression patterns between AD and SZ on learning and memory functions in different brain regions revealed in our study may help to understand the different mechanism between two diseases.


Scientific Reports | 2017

The identification and molecular mechanism of anti-stroke traditional Chinese medicinal compounds.

Jia-Qian Liu; Shao-Xing Dai; Jun-Juan Zheng; Yi-Cheng Guo; Wen-Xing Li; Gong-Hua Li; Jing-Fei Huang

Stroke is a worldwide epidemic disease with high morbidity and mortality. The continuously exploration of anti-stroke medicines and molecular mechanism has a long way to go. In this study, in order to screen candidate anti-stroke compounds, more than 60000 compounds from traditional Chinese medicine (TCM) database were computationally analyzed then docked to the 15 known anti-stroke targets. 192 anti-stroke plants for clinical therapy and 51 current anti-stroke drugs were used to validate docking results. Totally 2355 candidate anti-stroke compounds were obtained. Among these compounds, 19 compounds are structurally identical with 16 existing drugs in which part of them have been used for anti-stroke treatment. Furthermore, these candidate compounds were significantly enriched in anti-stroke plants. Based on the above results, the compound-target-plant network was constructed. The network reveals the potential molecular mechanism of anti-stroke for these compounds. Most of candidate compounds and anti-stroke plants are tended to interact with target NOS3, PSD-95 and PDE5A. Finally, using ADMET filter, we identified 35 anti-stroke compounds with favorable properties. The 35 candidate anti-stroke compounds offer an opportunity to develop new anti-stroke drugs and will improve the research on molecular mechanism of anti-stroke.


Scientific Reports | 2016

Corrigendum: In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

Shao-Xing Dai; Wen-Xing Li; Fei-Fei Han; Yi-Cheng Guo; Jun-Juan Zheng; Jia-Qian Liu; Qian Wang; Yue-Dong Gao; Gong-Hua Li; Jing-Fei Huang

Scientific Reports 6: Article number: 25462; published online: 05 May 2016; updated: 10 October 2016 .

Collaboration


Dive into the Shao-Xing Dai's collaboration.

Top Co-Authors

Avatar

Jing-Fei Huang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Gong-Hua Li

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Wen-Xing Li

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Jun-Juan Zheng

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Yi-Cheng Guo

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Jia-Qian Liu

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Qian Wang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Fei-Fei Han

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Yue-Dong Gao

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Bi-Wen Chen

Kunming Institute of Zoology

View shared research outputs
Researchain Logo
Decentralizing Knowledge