Shaobo Zhang
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaobo Zhang.
Cell | 2008
Feng Chun Yang; David A. Ingram; Shi Chen; Jin Yuan; Xiaohong Li; Xianlin Yang; Scott Knowles; Whitney Horn; Yan Li; Shaobo Zhang; Yanzhu Yang; Saeed T. Vakili; Menggang Yu; Dennis K. Burns; Kent A. Robertson; Gary D. Hutchins; Luis F. Parada; D. Wade Clapp
Interactions between tumorigenic cells and their surrounding microenvironment are critical for tumor progression yet remain incompletely understood. Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a common genetic disorder characterized by complex tumors called neurofibromas. Genetic studies indicate that biallelic loss of Nf1 is required in the tumorigenic cell of origin in the embryonic Schwann cell lineage. However, in the physiologic state, Schwann cell loss of heterozygosity is not sufficient for neurofibroma formation and Nf1 haploinsufficiency in at least one additional nonneoplastic lineage is required for tumor progression. Here, we establish that Nf1 heterozygosity of bone marrow-derived cells in the tumor microenvironment is sufficient to allow neurofibroma progression in the context of Schwann cell Nf1 deficiency. Further, genetic or pharmacologic attenuation of c-kit signaling in Nf1+/- hematopoietic cells diminishes neurofibroma initiation and progression. Finally, these studies implicate mast cells as critical mediators of tumor initiation.
Human Pathology | 2011
Liang Cheng; Shaobo Zhang; Gregory T. MacLennan; Sean R. Williamson; Antonio Lopez-Beltran; Rodolfo Montironi
Transitional cell (urothelial) carcinoma of the bladder is the second most common urologic malignancy and is one of the best understood neoplasms, with relatively well-defined pathogenetic pathways, natural history, and tumor biology. Conventional clinical and pathologic parameters are widely used to grade and stage tumors and to predict clinical outcome of transitional cell carcinoma; but the predictive ability of these parameters is limited, and there is a lack of indices that could allow prospective assessment of risk for individual patients. In the last decade, a wide range of candidate biomarkers representing key pathways in carcinogenesis have been reported to be clinically relevant and potentially useful as diagnostic and prognostic molecular markers, and as potential therapeutic targets. The use of molecular markers has facilitated the development of novel and more accurate diagnostic, prognostic, and therapeutic strategies. FGFR3 and TP53 mutations have been recognized as key genetic pathways in the carcinogenesis of transitional cell carcinoma. FGFR3 appears to be the most frequently mutated oncogene in transitional cell carcinoma; its mutation is strongly associated with low tumor grade, early stage, and low recurrence rate, which confer a better overall prognosis. In contrast, TP53 mutations are associated with higher tumor grade, more advanced stage, and more frequent tumor recurrences. These molecular markers offer the potential to characterize individual urothelial neoplasms more completely than is possible by histologic evaluation alone. Areas in which molecular markers may prove valuable include prediction of tumor recurrence, molecular staging of transitional cell carcinoma, detection of lymph node metastasis and circulating cancer cells, identification of therapeutic targets, and prediction of response to therapy. With accumulating molecular knowledge of transitional cell carcinoma, we are closer to the goal of bridging the gap between molecular findings and clinical outcomes. Assessment of key genetic pathways and expression profiles could ultimately establish a set of molecular markers to predict the biological nature of tumors and to establish new standards for molecular tumor grading, classification, and prognostication. The main focus of this review is to discuss clinically relevant biomarkers that might be useful in the management of transitional cell carcinoma and to provide approaches in the analysis of molecular pathways that influence the clinical course of bladder cancer.
Modern Pathology | 2012
Liang Cheng; Riley E. Alexander; Gregory T. MacLennan; Oscar W. Cummings; Rodolfo Montironi; Antonio Lopez-Beltran; Harvey Cramer; Darrell D. Davidson; Shaobo Zhang
The majority of lung adenocarcinoma patients with epidermal growth factor receptor- (EGFR) mutated or EML4–ALK rearrangement-positive tumors are sensitive to tyrosine kinase inhibitors. Both primary and acquired resistance in a significant number of those patients to these therapies remains a major clinical problem. The specific molecular mechanisms associated with tyrosine kinase inhibitor resistance are not fully understood. Clinicopathological observations suggest that molecular alterations involving so-called ‘driver mutations’ could be used as markers that aid in the selection of patients most likely to benefit from targeted therapies. In this review, we summarize recent developments involving the specific molecular mechanisms and markers that have been associated with primary and acquired resistance to EGFR-targeted therapy in lung adenocarcinomas. Understanding these mechanisms may provide new treatment avenues and improve current treatment algorithms.
Clinical Cancer Research | 2005
Timothy D. Jones; Mingsheng Wang; John N. Eble; Gregory T. MacLennan; Antonio Lopez-Beltran; Shaobo Zhang; Amy E. Cocco; Liang Cheng
Purpose: Human urothelial carcinoma is thought to arise from a field change that affects the entire urothelium. Multifocality of urothelial carcinoma is a common finding at endoscopy and surgery. Whether these coexisting tumors arise independently or are derived from the same tumor clone is uncertain. Molecular analysis of microsatellite alterations and X-chromosome inactivation status in the cells from each coexisting tumor may further our understanding of urothelial carcinogenesis. Experimental Design: We examined 58 tumors from 21 patients who underwent surgical excision for urothelial carcinoma. All patients had multiple separate foci of urothelial carcinoma (two to four) within the urinary tract. Genomic DNA samples were prepared from formalin-fixed, paraffin-embedded tissue sections using laser-capture microdissection. Loss of heterozygosity (LOH) assays for three microsatellite polymorphic markers on chromosome 9p21 (IFNA and D9S171), regions of putative tumor suppressor gene p16, and on chromosome 17p13 (TP53), the p53 tumor suppressor gene locus, were done. X-chromosome inactivation analysis was done on the urothelial tumors from 11 female patients. Results: Seventeen of 21 (81%) cases showed allelic loss in one or more of the urothelial tumors in at least one of the three polymorphic markers analyzed. Concordant allelic loss patterns between each coexisting urothelial tumor were seen in only 3 of 21 (14%) cases. A concordant pattern of nonrandom X-chromosome inactivation in the multiple coexisting urothelial tumors was seen in only 3 of 11 female patients; of these 3 cases, only one displayed an identical allelic loss pattern in all of the tumors on LOH analysis. Conclusion: LOH and X-chromosome inactivation assays show that the coexisting tumors in many cases of multifocal urothelial carcinoma have a unique clonal origin and arise from independently transformed progenitor urothelial cells, supporting the “field effect” theory for urothelial carcinogenesis.
American Journal of Pathology | 2002
Jiazhong Jiang; Blake Lee Neubauer; Jeremy R. Graff; Marcio Chedid; James E. Thomas; Neal W. Roehm; Shaobo Zhang; George J. Eckert; Michael O. Koch; John N. Eble; Liang Cheng
Phospholipase A2 (PLA2) enzymes release arachidonic acid from cellular phospholipids in a variety of mammalian tissues, including prostate. Group IIa secretory PLA2 (sPLA2) can generate arachidonate from cellular phospholipids. We examined the group IIa sPLA2 expression in benign prostatic tissues, prostatic intraepithelial neoplasia (PIN), and adenocarcinoma to determine whether sPLA2 expression is altered in the carcinogenesis of human prostatic cancer. Thirty-three of 74 total cases (45%) of benign prostatic tissue showed positive immunohistochemical staining for group IIA sPLA2, whereas 63 of 69 total cases (91%) of high-grade PINs and 70 of 78 total cases (90%) of adenocarcinomas gave positive results. Four of 10 cases of low-grade PIN showed positive immunoreactivity for sPLA2. The number of cells staining for sPLA2 was significantly less in benign epithelium (4%) and low-grade PIN (4%) compared to high-grade PIN (40%) or adenocarcinoma (38%) (P < 0.001). There was no significant difference between high-grade PIN and adenocarcinoma in the number of cells staining positively for sPLA2. The intensity of sPLA2 immunoreactivity was also different among benign prostatic tissue, low-grade PIN, high-grade PIN, and prostatic adenocarcinoma specimens. The malignant cells demonstrated more intense immunohistochemical staining (moderate to strong staining in 81% and 69% cases for high-grade PIN and adenocarcinoma, respectively) than benign glands (moderate staining in 11% of cases). No strong staining was observed in benign glands or low-grade PIN. Our data are consistent with the contention that group IIA sPLA2 expression is elevated in neoplastic prostatic tissue and support the hypothesis that dysregulation of sPLA2 may play a role in prostatic carcinogenesis.
Modern Pathology | 2003
Matteo Brunelli; John N. Eble; Shaobo Zhang; G Martignoni; Liang Cheng
Metanephric adenoma has morphologic similarities to papillary renal cell neoplasms. Cytogenetic studies of papillary renal cell carcinoma and papillary adenoma have shown frequent gains of chromosomes 7 and 17 and loss of the Y chromosome. Some cytogenetic studies have supported the hypothesis that metanephric adenoma is related to papillary renal cell neoplasia; others have not. Seven metanephric adenomas were studied with fluorescence in situ hybridization in paraffin sections using centromeric probes for chromosomes 7, 17, and Y diluted 1:100 with tDenHyb1 buffer. The signals in 100 to 200 nuclei were counted in each tumor. Samples of histologically normal renal cortical tubule epithelium were used as controls. In all seven metanephric adenomas, the results for chromosomes 7 and 17 were similar: a high percentage of nuclei with two signals (range, 75 to 85%; median, 79%). Normal kidney showed similar results (range, 78 to 88%; median, 84%). The Y chromosome was present in all three of the tumors from males (range, 86 to 89% of nuclei; median, 87%). Normal kidney gave similar results (range 82% to 91%, median 84%). The presence of chromosomes 7, 17, and Y in metanephric adenomas is similar to their presence in normal kidney. Metanephric adenoma lacks the frequent gains of chromosomes 7 and 17 and losses of the Y chromosome that are typical of papillary renal cell neoplasms, supporting the notion that metanephric adenoma is not related to papillary renal cell carcinoma and papillary adenoma. Genetic analysis of chromosomes 7, 17, and Y may facilitate discrimination of metanephric adenoma from papillary renal cell carcinoma in difficult cases.
Human Pathology | 2009
Liang Cheng; Shaobo Zhang; Gregory T. MacLennan; Antonio Lopez-Beltran; Rodolfo Montironi
Renal cell carcinomas comprise a heterogeneous group of epithelial neoplasms with diverse biologic potential and variable clinical outcomes. The application of molecular and cytogenetic techniques to the study of renal neoplasms has improved our understanding of the molecular mechanisms responsible for tumor initiation and progression. Molecular classification of renal cell carcinomas has also provided new avenues for diagnosis, clinical outcome, and therapy response prediction. In this article, we review the molecular markers for various renal epithelial neoplasms and discuss the mechanisms underlying the development of these neoplasms. We also evaluate the use of molecular and cytogenetic techniques in establishing an accurate diagnosis in difficult cases and their potential usefulness in accurately classifying renal neoplasms, assessing prognosis, and selecting appropriate therapy.
Modern Pathology | 2003
Matteo Brunelli; John N. Eble; Shaobo Zhang; G Martignoni; Liang Cheng
It has been suggested that gains of chromosomes 7 and 17 and loss of Y occur in renal papillary adenoma and that progression to papillary renal cell carcinoma is marked by gains of additional chromosomes, most frequently 12, 16, and 20. Previous studies have included very few lesions of <5 mm in diameter, a requirement of the present definition of papillary adenoma. Ten papillary adenomas (ranging from 1 to 5 mm in diameter) from autopsy material and 10 surgically resected papillary renal cell carcinomas were studied with fluorescence in situ hybridization in paraffin sections using centromeric probes for chromosomes 7, 12, 16, 17, 20, and Y diluted 1:100 with tDenHyb1 buffer. The signals in 50 to 150 nuclei were counted in each tumor. Controls for all the probes were normal renal tissues from the same patients. Three or more signals per nucleus were frequently observed in papillary adenomas: chromosome 7 (range, 10 to 50%; ≥30% in 9 of 10), 17 (range, 10 to 47%; ≥30% in 7), 16 (range, 1 to 63%; ≥10% in 5), 12 (range, 0 to 32%; ≥10% in 4), and 20 (range, 5 to 49%; ≥10% in 5). Loss of the Y chromosome was observed in 80 to 90% of nuclei in 9 adenomas from males. Three or more signals were frequent in papillary renal cell carcinomas: chromosome 7 (range, 32 to 63%; ≥30% in 10 of 10), 17 (range, 28 to 61%; ≥30% in 7), 16 (range, 0 to 45%; ≥10% in 6), 12 (range, 1 to 37, ≥10% in 5), 20 (range, 2 to 44%; ≥10% in 4). No signal for Y was observed in 12 to 88% (≥81% in 6) of nuclei in 7 carcinomas from males. Statistical analysis showed no difference between adenomas and carcinomas. Gains of chromosomes 7, 17, 16, 12, and 20 and loss of the Y chromosome occur early in the evolution of papillary renal cell neoplasia in tumors that are only a few millimeters in diameter. Progressive gains of these chromosomes do not appear to correlate with the transition from adenoma to carcinoma.
American Journal of Pathology | 2003
Guangyuan Zeng; Zhiqiang Hu; Michael S. Kinch; Chong Xian Pan; David A. Flockhart; Chinghai Kao; Thomas A. Gardner; Shaobo Zhang; Lang Li; Lee Ann Baldridge; Michael O. Koch; Thomas M. Ulbright; John N. Eble; Liang Cheng
EphA2 is a transmembrane receptor tyrosine kinase that is overexpressed in many carcinomas. Specific targeting of EphA2 with monoclonal antibodies is sufficient to inhibit the growth, migration and invasiveness of aggressive cancers in animal models. Using immunohistochemical analyses, we measured the expression of EphA2 in prostatic adenocarcinoma, high-grade prostatic intraepithelial neoplasia, and adjacent benign prostate tissue from ninety-three radical prostatectomy specimens. These results were related to multiple clinical and pathologicalcharacteristics. The fraction of cells staining positively with EphA2 in benign prostatic epithelium (mean, 12%) was significantly lower than that in high-grade prostatic intraepithelial neoplasia (mean, 67%, P < 0.001) and prostatic adenocarcinoma (mean, 85%, P < 0.001). Moreover, the intensity of EphA2 immunoreactivity in prostatic adenocarcinoma was significantly higher than in benign prostatic tissue (P < 0.001) or high-grade prostatic intraepithelial neoplasia (P < 0.001). Benign prostatic epithelium showed weak or no immunoreactivity for EphA2 in all cases examined. Whereas EphA2 immunoreactivity related to neoplastic transformation, it did not correlate with other clinical and pathological parameters examined. Our data suggest that EphA2 levels increase as prostatic epithelial cells progress toward a more aggressive phenotype. Progressively higher levels of EphA2 in high-grade prostatic intraepithelial neoplasia and prostatic carcinoma are consistent with recent evidence that EphA2 functions as a powerful oncogene. Moreover, the presence of high levels of EphA2 in these cells suggests opportunities for prostate cancer prevention and treatment.
Clinical Cancer Research | 2005
Timothy D. Jones; John N. Eble; Mingsheng Wang; Gregory T. MacLennan; Brett Delahunt; Matteo Brunelli; G Martignoni; Antonio Lopez-Beltran; Stephen M. Bonsib; Thomas M. Ulbright; Shaobo Zhang; Kelly Nigro; Liang Cheng
Purpose: In patients with papillary renal cell carcinoma, it is not uncommon to find two or more anatomically distinct and histologically similar tumors at radical nephrectomy. Whether these multiple papillary lesions result from intrarenal metastasis or arise independently is unknown. Previous studies have shown that multifocal clear cell renal cell carcinomas express identical allelic loss and shift patterns in the different tumors within the same kidney, consistent with a clonal origin. However, similar clonality assays for multifocal papillary renal cell neoplasia have not been done. Molecular analysis of microsatellite and chromosome alterations and X-chromosome inactivation status in separate tumors in the same patient can be used to study the genetic relationships among the coexisting multiple tumors. Experimental Design: We examined specimens from 21 patients who underwent radical nephrectomy for renal cell carcinoma. All patients had multiple separate papillary lesions (ranging from 2 to 5). Eighteen patients had multiple papillary renal cell carcinomas. Seven had one or more papillary renal cell carcinomas with coexisting papillary adenomas. Genomic DNA samples were prepared from formalin-fixed, paraffin-embedded tissue sections using laser-capture microdissection. Loss of heterozygosity assays were done for six microsatellite polymorphic markers for putative tumor suppressor genes on chromosomes 3p14 (D3S1285), 7q31 (D7S522), 9p21 (D9S171), 16q23 (D16S507), 17q21 (D17S1795), and 17p13 (TP53). X-chromosome inactivation analyses were done on the papillary kidney tumors from three female patients. Fluorescence in situ hybridization analysis was done on the tumors of selected patients showing allelic loss at loci on chromosome 7 and/or chromosome 17. Results: Twenty of 21 (95%) cases showed allelic loss in one or more of the papillary lesions in at least one of the six polymorphic markers analyzed. A concordant allelic loss pattern between each coexisting kidney tumor was seen in only 1 of 21 (5%) cases. A concordant pattern of nonrandom X-chromosome inactivation in the coexisting multiple papillary lesions was seen in two of three female patients. A discordant pattern of X-chromosome inactivation was seen in the tumors of the other female patient. Fluorescence in situ hybridization showed that the majority of tumors analyzed had gains of chromosomes 7 and 17. Two patients had one tumor with chromosomal gain and another separate tumor that did not. Conclusion: Our data suggest that, unlike multifocal clear cell renal cell carcinomas, the multiple tumors in patients with papillary renal cell carcinoma arise independently. Thus, intrarenal metastasis does not seem to play an important role in the spread of papillary renal cell carcinoma, a finding that has surgical, therapeutic, and prognostic implications.