Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaohong Qu is active.

Publication


Featured researches published by Shaohong Qu.


Genetics | 2006

The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice

Shaohong Qu; Guifu Liu; Bo Zhou; Maria Bellizzi; Lirong Zeng; Liangying Dai; Bin Han; Guo-Liang Wang

The broad-spectrum rice blast resistance gene Pi9 was cloned using a map-based cloning strategy. Sequencing of a 76-kb bacterial artificial chromosome (BAC) contig spanning the Pi9 locus led to identification of six tandemly arranged resistance-like genes with a nucleotide-binding site (NBS) and leucine-rich repeats (LRRs) (Nbs1-Pi9–Nbs6-Pi9). Analysis of selected Pi9 deletion mutants and transformation of a 45-kb fragment from the BAC contig into the susceptible rice cultivar TP309 narrowed down Pi9 to the candidate genes Nbs2-Pi9 and Nbs3-Pi9. Disease evaluation of the transgenic lines carrying the individual candidate genes confirmed that Nbs2-Pi9 is the Pi9 gene. Sequence comparison analysis revealed that the six paralogs at the Pi9 locus belong to four classes and gene duplication might be one of the major evolutionary forces contributing to the formation of the NBS–LRR gene cluster. Semiquantitative reverse transcriptase (RT)–PCR analysis showed that Pi9 was constitutively expressed in the Pi9-resistant plants and was not induced by blast infection. The cloned Pi9 gene provides a starting point to elucidate the molecular basis of the broad-spectrum disease resistance and the evolutionary mechanisms of blast resistance gene clusters in rice.


Molecular Plant-microbe Interactions | 2006

The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea

Bo Zhou; Shaohong Qu; Guifu Liu; Maureen Dolan; Hajime Sakai; Guodong Lu; Maria Bellizzi; Guo-Liang Wang

The rice blast resistance (R) genes Pi2 and Piz-t confer broad-spectrum resistance against different sets of Magnaporthe grisea isolates. We first identified the Pi2 gene using a map-based cloning strategy. The Pi2 gene is a member of a gene cluster comprising nine gene members (named Nbs1-Pi2 to Nbs9-Pi2) and encodes a protein with a nucleotide-binding site and leucine-rich repeat (LRR) domain. Fine genetic mapping, molecular characterization of the Pi2 susceptible mutants, and complementation tests indicated that Nbs4-Pi2 is the Pi2 gene. The Piz-t gene, a Pi2 allele in the rice cultivar Toride 1, was isolated based on the Pi2 sequence information. Complementation tests confirmed that the family member Nbs4-Piz-t is Piz-t. Sequence comparison revealed that only eight amino-acid changes, which are confined within three consecutive LRR, differentiate Piz-t from Pi2. Of the eight variants, only one locates within the xxLxLxx motif. A reciprocal exchange of the single amino acid between Pi2 and Piz-t did not convert the resistance specificity to each other but, rather, abolished the function of both resistance proteins. These results indicate that the single amino acid in the xxLxLxx motif may be critical for maintaining the recognition surface of Pi2 and Piz-t to their respective avirulence proteins.


The Plant Cell | 2004

Spotted leaf11, a Negative Regulator of Plant Cell Death and Defense, Encodes a U-Box/Armadillo Repeat Protein Endowed with E3 Ubiquitin Ligase Activity

Lirong Zeng; Shaohong Qu; Alicia Bordeos; Chengwei Yang; Marietta Baraoidan; Hongyan Yan; Qi Xie; Baek Hie Nahm; Hei Leung; Guo-Liang Wang

The rice (Oryza sativa) spotted leaf11 (spl11) mutant was identified from an ethyl methanesulfonate–mutagenized indica cultivar IR68 population and was previously shown to display a spontaneous cell death phenotype and enhanced resistance to rice fungal and bacterial pathogens. Here, we have isolated Spl11 via a map-based cloning strategy. The isolation of the Spl11 gene was facilitated by the identification of three additional spl11 alleles from an IR64 mutant collection. The predicted SPL11 protein contains both a U-box domain and an armadillo (ARM) repeat domain, which were demonstrated in yeast and mammalian systems to be involved in ubiquitination and protein–protein interactions, respectively. Amino acid sequence comparison indicated that the similarity between SPL11 and other plant U-box-ARM proteins is mostly restricted to the U-box and ARM repeat regions. A single base substitution was detected in spl11, which results in a premature stop codon in the SPL11 protein. Expression analysis indicated that Spl11 is induced in both incompatible and compatible rice–blast interactions. In vitro ubiquitination assay indicated that the SPL11 protein possesses E3 ubiquitin ligase activity that is dependent on an intact U-box domain, suggesting a role of the ubiquitination system in the control of plant cell death and defense.


Molecular Plant Pathology | 2016

Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae

Houxiang Kang; Yue Wang; Shasha Peng; Yanli Zhang; Yinghui Xiao; Dan Wang; Shaohong Qu; Zhiqiang Li; Shuangyong Yan; Zhilong Wang; Wende Liu; Yuese Ning; Pavel Korniliev; Hei Leung; Jason G. Mezey; Susan R. McCouch; Guo-Liang Wang

Resistance in rice cultivars to the rice blast fungus Magnaporthe oryzae is complex and is controlled by both major genes and quantitative trait loci (QTLs). We undertook a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) that was genotyped using a high-density (700 000 single nucleotide polymorphisms) array and inoculated with five diverse M. oryzae isolates. We identified 97 loci associated with blast resistance (LABRs). Among them, 82 were new regions and 15 co-localized with known blast resistance loci. The top 72 LABRs explained up to 98% of the phenotypic variation. The candidate genes in the LABRs encode nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance proteins, receptor-like protein kinases, transcription factors and defence-related proteins. Among them, LABR_64 was strongly associated with resistance to all five isolates. We analysed the function of candidate genes underlying LABR_64 using RNA interference (RNAi) technology and identified two new resistance alleles at the Pi5 locus. We demonstrate an efficient strategy for rapid allele discovery using the power of GWAS, coupled with RNAi technology, for the dissection of complex blast resistance in rice.


Journal of Integrative Plant Biology | 2009

Construction and application of efficient Ac-Ds transposon tagging vectors in rice.

Shaohong Qu; Jong-Seong Jeon; Pieter B.F. Ouwerkerk; Maria Bellizzi; Jan E. Leach; Pamela C. Ronald; Guo-Liang Wang

Transposons are effective mutagens alternative to T-DNA for the generation of insertional mutants in many plant species including those whose transformation is inefficient. The current strategies of transposon tagging are usually slow and labor-intensive and yield low frequency of tagged lines. We have constructed a series of transposon tagging vectors based on three approaches: (i) AcTPase controlled by glucocorticoid binding domain/VP16 acidic activation domain/Gal4 DNA-binding domain (GVG) chemical-inducible expression system; (ii) deletion of AcTPase via Cre-lox site-specific recombination that was initially triggered by Ds excision; and (iii) suppression of early transposition events in transformed rice callus through a dual-functional hygromycin resistance gene in a novel Ds element (HPT-Ds). We tested these vectors in transgenic rice and characterized the transposition events. Our results showed that these vectors are useful resources for functional genomics of rice and other crop plants. The vectors are freely available for the community.


Plant Physiology | 2015

Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy

Xiaoqing Gao; Jie Zhou; Jun Li; Xiaowei Zou; Jianhua Zhao; Qingliang Li; Ran Xia; Ruifang Yang; Dekai Wang; Zhaoxue Zuo; J.P. Tu; Yuezhi Tao; Xiaoyun Chen; Qi Xie; Zengrong Zhu; Shaohong Qu

An improved transposon-mediated transgene reintegration system efficiently generates marker-free transgenic rice plants. Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops.


Frontiers in Plant Science | 2016

Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to Magnaporthe oryzae

Yu Zhang; Jianhua Zhao; Yali Li; Zhengjie Yuan; Haiyan He; Haihe Yang; Haiyan Qu; Chenyan Ma; Shaohong Qu

Rice blast disease is one of the most destructive rice diseases worldwide. The pi21 gene confers partial and durable resistance to Magnaporthe oryzae. However, little is known regarding the molecular mechanisms of resistance mediated by the loss-of-function of Pi21. In this study, comparative transcriptome profiling of the Pi21-RNAi transgenic rice line and Nipponbare with M. oryzae infection at different time points (0, 12, 24, 48, and 72 hpi) were investigated using RNA sequencing. The results generated 43,222 unique genes mapped to the rice genome. In total, 1109 differentially expressed genes (DEGs) were identified between the Pi21-RNAi line and Nipponbare with M. oryzae infection, with 103, 281, 209, 69, and 678 DEGs at 0, 12, 24, 48, and 72 hpi, respectively. Functional analysis showed that most of the DEGs were involved in metabolism, transport, signaling, and defense. Among the genes assigned to plant—pathogen interaction, we identified 43 receptor kinase genes associated with pathogen-associated molecular pattern recognition and calcium ion influx. The expression levels of brassinolide-insensitive 1, flagellin sensitive 2, and elongation factor Tu receptor, ethylene (ET) biosynthesis and signaling genes, were higher in the Pi21-RNAi line than Nipponbare. This suggested that there was a more robust PTI response in Pi21-RNAi plants and that ET signaling was important to rice blast resistance. We also identified 53 transcription factor genes, including WRKY, NAC, DOF, and ERF families that show differential expression between the two genotypes. This study highlights possible candidate genes that may serve a function in the partial rice blast resistance mediated by the loss-of-function of Pi21 and increase our understanding of the molecular mechanisms involved in partial resistance against M. oryzae.


Molecules and Cells | 2012

Development of a Simple and Efficient System for Excising Selectable Markers in Arabidopsis Using a Minimal Promoter::Cre Fusion Construct

Hyun-Bi Kim; Jung-Il Cho; Nayeon Ryoo; Shaohong Qu; Guo-Liang Wang; Jong-Seong Jeon

The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.


Journal of Plant Biology | 2018

Comparative Transcriptome Analysis of Rhizoctonia solani-resistant and -Susceptible Rice Cultivars Reveals the Importance of Pathogen Recognition and Active Immune Responses in Host Resistance

Zhengjie Yuan; Yu Zhang; Guojuan Xu; Dongling Bi; Haiyan Qu; Xiaowei Zou; Xiaoqing Gao; Haihe Yang; Haiyan He; Xuli Wang; Jiandong Bao; Shimin Zuo; Xuebiao Pan; Bo Zhou; Guo-Liang Wang; Shaohong Qu

Rice sheath blight (SB), caused by Rhizoctonia solani (R. solani), is a major threat to rice production worldwide. The molecular mechanisms of the SB resistance in rice are poorly understood. The transcriptomes of the SBresistant rice cultivar YSBR1 and the susceptible cultivar Lemont were analyzed after R. solani infection. A total of 7624 differentially expressed genes (DEGs) were identified at one or more timepoints in a cultivar. 5526 and 5618 DEGs were differentially expressed in Lemont and YSBR1, respectively. YSBR1 exhibited stronger and earlier transcriptional response to R. solani than Lemont. Gene ontology enrichment analysis revealed that genes that encode cell wall-modifying and glycosyl-degrading enzymes or anti-microbial proteins were specifically induced in YSBR1 at 6 hpi. MapMan analysis revealed that more DEGs related with cell wall, β-glucanses, respiratory burst, phenylpropanoids and lignin were highly induced by R. solani in YSBR1 than in Lemont. The results also showed that receptor-like kinases and jasmonic acid signaling may play important roles in host resistance to R. solani. This study highlights potential candidate genes and signaling pathways involved in rice sheath resistance and can help to further clarify the mechanistic events underlying resistance and susceptibility to R. solani.


Rice blast: interaction with rice and control. Proceedings of the 3rd International Rice Blast Conference, Tsukuba Science City, Ibaraki, Japan, 11 to 14 September 2002. | 2004

Broad-Spectrum Resistance Genes PI2(T) and PI9(T) are Clustered on Chromosome 6

Guifu Liu; Shaohong Qu; Bo Zhou; Lirong Zeng; Guo-Liang Wang

Pi9(t) was introgressed from the wild rice Oryza minuta and Pi2(t) was transferred from a breeding line developed at CIAT. Both Pi2(t) and Pi9(t) were previously mapped on rice chromosome 6 and confer high level of resistance to diverse blast isolates. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2(t) and Pi9(t) plants. Pi9(t) was highly resistant to all isolates tested and Pi2(t) was resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. To understand the molecular basis of broad-spectrum resistance, we conducted fine-mapping of the two blast resistance genes. A highresolution genetic map was established using RAPD markers tightly linked to Pi9(t). Using these markers, a bacterial artificial chromosome (BAC) contig was constructed covering about 100 kb at the Pi9(t) locus. Interestingly, all the Pi9(t) markers closely segregated with the Pi2(t) gene in an F2 mapping population. Whether Pi9(t) and Pi2(t) are tightly linked or allelic is under investigation.

Collaboration


Dive into the Shaohong Qu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guifu Liu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Zhou

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Zhou

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Liangying Dai

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qi Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hei Leung

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge