Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaohua Peng is active.

Publication


Featured researches published by Shaohua Peng.


Science Translational Medicine | 2012

Kinase-Impaired BRAF Mutations in Lung Cancer Confer Sensitivity to Dasatinib

Banibrata Sen; Shaohua Peng; Ximing Tang; Heidi S. Erickson; Hector Galindo; Tuhina Mazumdar; David J. Stewart; Ignacio I. Wistuba; Faye M. Johnson

Induction of tumor cell senescence may explain the response of a patient with BRAF kinase–impaired lung cancer to the multikinase inhibitor dasatinib. A Lucky Break with BRAF The prognosis for those with metastatic non–small cell lung cancer (NSCLC) is bleak—the median survival time is measured in months. Therapeutic benefits have been achieved with targeted drugs in subpopulations of NSCLC patients with specific mutations, but the genetic changes responsible for this disease are undefined in most cases. Understanding why certain tumors respond to a given treatment might help determine useful therapeutic targets. Sen et al. now describe a striking case—the mutation responsible for the strong response of one patient with metastatic NSCLC to treatment with the tyrosine kinase inhibitor dasatinib. In a previous clinical trial of dasatinib treatment for metastatic NSCLC that lasted for 12 weeks, only a single patient responded to treatment; his tumor shrank and continued to shrink after treatment ended. Four years later, he appears free of active cancer. The researchers analyzed this patient’s tumor tissue and did not detect mutations that had been associated with NSCLC in other patients, but did find a mutation in the serine-threonine kinase BRAF that markedly impaired its kinase activity. (In contrast, another well-characterized oncogenic mutation in BRAF is kinase-activating.) Sen et al. found that in NSCLC cell lines with other kinase-inactivating BRAF mutations, dasatinib induced largely irreversible senescence—cell cycle arrest. Overexpression of kinase-active BRAF, however, increased dasatinib resistance in these cells, indicating that the inactive BRAF kinase was required for their dasatinib sensitivity. Furthermore, treatment of dasatinib-resistant cancer cells that express wild-type BRAF with a BRAF inhibitor increased their sensitivity to dasatinib. Exactly how dasatinib induces senescence in NSCLC cells with kinase-impaired BRAF is not yet clear, but the finding opens new possibilities for treatment. Cancers in which BRAF is impaired may respond well to dasatinib; more broadly, dasatinib in combination with BRAF inhibitors may be useful for treating tumors that express wild-type BRAF. During a clinical trial of the tyrosine kinase inhibitor dasatinib for advanced non–small cell lung cancer (NSCLC), one patient responded dramatically and remains cancer-free 4 years later. A comprehensive analysis of his tumor revealed a previously undescribed, kinase-inactivating BRAF mutation (Y472CBRAF); no inactivating BRAF mutations were found in the nonresponding tumors taken from other patients. Cells transfected with Y472CBRAF exhibited CRAF, MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase), and ERK (extracellular signal–regulated kinase) activation—characteristics identical to signaling changes that occur with previously known kinase-inactivating BRAF mutants. Dasatinib selectively induced senescence in NSCLC cells with inactivating BRAF mutations. Transfection of other NSCLC cells with these BRAF mutations also increased these cells’ dasatinib sensitivity, whereas transfection with an activating BRAF mutation led to their increased dasatinib resistance. The sensitivity induced by Y472CBRAF was reversed by the introduction of a BRAF mutation that impairs RAF dimerization. Dasatinib inhibited CRAF modestly, but concurrently induced RAF dimerization, resulting in ERK activation in NSCLC cells with kinase-inactivating BRAF mutations. The sensitivity of NSCLC with kinase-impaired BRAF to dasatinib suggested synthetic lethality of BRAF and an unknown dasatinib target. Inhibiting BRAF in NSCLC cells expressing wild-type BRAF likewise enhanced these cells’ dasatinib sensitivity. Thus, the patient’s BRAF mutation was likely responsible for his tumor’s marked response to dasatinib, suggesting that tumors bearing kinase-impaired BRAF mutations may be exquisitely sensitive to dasatinib. Moreover, the potential synthetic lethality of combination therapy including dasatinib and BRAF inhibitors may lead to additional therapeutic options against cancers with wild-type BRAF.


Clinical Cancer Research | 2011

Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer

Banibrata Sen; Shaohua Peng; Babita Saigal; Michelle D. Williams; Faye M. Johnson

Purpose: c-Src inhibition in cancer cells leads to an abrogation of invasion but a variable effect on apoptosis. The pathways downstream of c-Src promoting survival are not well characterized. Because cancer therapy that both decreases invasion and induces significant apoptosis would be ideal, we sought to characterize the mechanisms of resistance to c-Src inhibition. Experimental Design: c-Src was inhibited in a panel of oral cancer cell lines and subsequent survival and signaling measured. The interactions between c-Src and c-Met were evaluated using immunoprecitation and an in vitro kinase assay. Cytotoxicity was measured and the Chou–Talalay combination index calculated. An orthotopic model of oral cancer was used to assess the effects of c-Met and c-Src inhibitors. Results: Inhibition of c-Src resulted in c-Met inhibition in sensitive cells lines, but not in resistant cell lines. Isolated c-Met was a c-Src substrate in both sensitive and resistant cells, but there was no interaction of c-Src and c-Met in intact resistant cells. To examine the biological consequences of this mechanism, we demonstrated synergistic cytotoxicity, enhanced apoptosis, and decreased tumor size with the combination of c-Src and c-Met inhibitors. Conclusions: Sustained c-Met activation can mediate resistance to c-Src inhibition. These data suggest that the differences between c-Met and c-Src signaling in sensitive and resistant cells are due to distinct factors promoting or inhibiting interactions, respectively, rather than to intrinsic structural changes in c-Src or c-Met. The synergistic cytotoxic effects of c-Src and c-Met inhibition may be important for the treatment of head and neck cancers. Clin Cancer Res; 17(3); 514–24. ©2010 AACR.


Clinical Cancer Research | 2012

STAT5A-Mediated SOCS2 Expression Regulates Jak2 and STAT3 Activity Following c-Src Inhibition in Head and Neck Squamous Carcinoma

Banibrata Sen; Shaohua Peng; Denise Woods; Ignacio I. Wistuba; Diana Bell; Adel K. El-Naggar; Stephen Y. Lai; Faye M. Johnson

Purpose: The inhibition of c-Src results in a striking reduction in cancer cell invasion, but the effect on cell survival is modest. Defining mechanisms that limit apoptosis following c-Src inhibition could result in an ideal therapeutic approach that both inhibits invasion and leads to apoptosis. In this regard, we discovered a novel feedback loop that results in STAT3 reactivation following sustained c-Src inhibition. Here we define the mechanism underlying this feedback loop and examine the effect of inhibiting it in vivo. Experimental Design: We measured levels and activity of pathway components using PCR, Western blotting, and kinase assays following their manipulation using both molecular and pharmacologic approaches. We used a heterotransplant animal model in which human oral squamous cancer is maintained exclusively in vivo. Results: Following c-Src inhibition, STAT5 is durably inhibited. The inhibition of STAT5A, but not STAT5B, subsequently reduces the expression of suppressors of cytokine signaling 2 (SOCS2). SOCS2 inhibits Janus kinase 2 (Jak2) activity and Jak2–STAT3 binding. SOCS2 expression is necessary for STAT3 inhibition by c-Src inhibitors. Overexpression of SOCS2 is adequate to prevent STAT3 reactivation and to enhance the cytotoxic effects of c-Src inhibition. Likewise, the combination of Jak and c-Src inhibitors led to significantly more apoptosis than either agent alone in vivo. Conclusions: To our knowledge, ours is the first study that fully defines the mechanism underlying this feedback loop, in which sustained c-Src inhibition leads to diminished SOCS2 expression via sustained inhibition of STAT5A, allowing activation of Jak2 and STAT3, Jak2–STAT3 binding, and survival signals. Clin Cancer Res; 18(1); 127–39. ©2011 AACR.


Molecular Cancer Therapeutics | 2014

A Comprehensive Evaluation of Biomarkers Predictive of Response to PI3K Inhibitors and of Resistance Mechanisms in Head and Neck Squamous Cell Carcinoma

Tuhina Mazumdar; Lauren Averett Byers; Patrick Kwok Shing Ng; Gordon B. Mills; Shaohua Peng; Lixia Diao; You Hong Fan; Katherine Stemke-Hale; John V. Heymach; Jeffrey N. Myers; Bonnie S. Glisson; Faye M. Johnson

The PI3K/AKT/mTOR pathway is frequently activated in head and neck squamous cell carcinoma (HNSCC), but pathway inhibition has variable efficacy. Identification of predictive biomarkers and mechanisms of resistance would allow selection of patients most likely to respond and novel therapeutic combinations. The purpose of this study was to extend recent discoveries regarding the PI3K/AKT/mTOR pathway in HNSCC by more broadly examining potential biomarkers of response, by examining pathway inhibitors with a diverse range of targets, and by defining mechanisms of resistance and potential combination therapies. We used reverse-phase protein arrays (RPPA) to simultaneously evaluate expression of 195 proteins; SNP array to estimate gene copy number; and mass array to identify mutations. We examined altered signaling at baseline and after pathway inhibition. Likewise, we examined the activation of the PI3K/AKT/mTOR pathway in HNSCC tumors by RPPA. Cell lines with PIK3CA mutations were sensitive to pathway inhibitors, whereas amplification status did not predict sensitivity. While we identified a set of individual candidate biomarkers of response to pathway inhibitors, proteomic pathway scores did not correlate with amplification or mutation and did not predict response. Several receptor tyrosine kinases, including EGFR and ERK, were activated following PI3K inhibition in resistant cells; dual pathway inhibition of PI3K and EGFR or MEK demonstrated synergy. Combined MEK and PI3K inhibition was markedly synergistic in HRAS-mutant cell lines. Our findings indicate that clinical trials of single-agent PI3K/AKT/mTOR pathway inhibitors in selected populations and of PI3K/EGFR or PI3K/MEK inhibitor combinations are warranted; we plan to conduct such trials. Mol Cancer Ther; 13(11); 2738–50. ©2014 AACR.


Cancer Letters | 2015

Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer

Chuncheng Hao; Li Wang; Shaohua Peng; Hongyu Li; Jing Hu; Xiao Huang; Wei Liu; Hui Zhang; Shuhong Wu; Apar Pataer; John V. Heymach; Agda Karina Eterovic; Qingxiu Zhang; Kenna R. Shaw; Ken Chen; Andrew Futreal; Michael Wang; Wayne L. Hofstetter; Reza J. Mehran; David C. Rice; Jack A. Roth; Boris Sepesi; Stephen G. Swisher; Ara A. Vaporciyan; Garrett L. Walsh; Faye M. Johnson; Bingliang Fang

Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies.


Journal of Translational Medicine | 2013

Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers

Shaohua Peng; Chad J. Creighton; Yiqun Zhang; Banibrata Sen; Tuhina Mazumdar; Jeffrey N. Myers; Adrian Woolfson; Matthew V. Lorenzi; Diana Bell; Michelle D. Williams; Faye M. Johnson

BackgroundThe patient-derived xenograft (PDX) model is likely to reflect human tumor biology more accurately than cultured cell lines because human tumors are implanted directly into animals; maintained in an in vivo, three-dimensional environment; and never cultured on plastic. PDX models of head and neck squamous cell carcinoma (HNSCC) have been developed previously but were not well characterized at the molecular level. HNSCC is a deadly and disfiguring disease for which better systemic therapy is desperately needed. The development of new therapies and the understanding of HNSCC biology both depend upon clinically relevant animal models. We developed and characterized the patient-derived xenograft (PDX) model because it is likely to recapitulate human tumor biology.MethodsWe transplanted 30 primary tumors directly into mice. The histology and stromal components were analyzed by immunohistochemistry. Gene expression analysis was conducted on patient tumors and on PDXs and cell lines derived from one PDX and from independent, human tumors.ResultsFive of 30 (17%) transplanted tumors could be serially passaged. Engraftment was more frequent among HNSCC with poor differentiation and nodal disease. The tumors maintained the histologic characteristics of the parent tumor, although human stromal components were lost upon engraftment. The degree of difference in gene expression between the PDX and its parent tumor varied widely but was stable up to the tenth generation in one PDX. For genes whose expression differed between parent tumors and cell lines in culture, the PDX expression pattern was very similar to that of the parent tumor. There were also significant expression differences between the human tumors that subsequently grew in mice and those that did not, suggesting that this model enriches for cancers with distinct biological features. The PDX model was used successfully to test targeted drugs in vivo.ConclusionThe PDX model for HNSCC is feasible, recapitulates the histology of the original tumor, and generates stable gene expression patterns. Gene expression patterns and histology suggested that the PDX more closely recapitulated the parental tumor than did cells in culture. Thus, the PDX is a robust model in which to evaluate tumor biology and novel therapeutics.


Molecular Cancer Therapeutics | 2012

Global Evaluation of Eph Receptors and Ephrins in Lung Adenocarcinomas Identifies EphA4 as an Inhibitor of Cell Migration and Invasion

Pierre Saintigny; Shaohua Peng; Li Zhang; Banibrata Sen; Ignacio I. Wistuba; Scott M. Lippman; Luc Girard; John D. Minna; John V. Heymach; Faye M. Johnson

The Eph family of receptors is the largest family of receptor tyrosine kinases, but it remains poorly studied in lung cancer. We aimed to systematically explore the human Eph receptors and their ligands, the ephrins, in lung adenocarcinoma. The prognostic impact of Eph receptor and ephrin gene expression was analyzed using 2 independent cohorts of lung adenocarcinoma. Gene expression profiles in lung adenocarcinoma compared with normal adjacent lung were studied in 3 independent cohorts and in cell lines. Gene expression profiles were validated with quantitative polymerase chain reaction (qPCR) and Western blotting in cell lines. Functional studies to assess the role of Eph receptor A4 (EphA4) were carried out in vitro. The biological effects of EphA4 in lung cancer cell lines were assayed following overexpression and knockdown. Of the 11 Eph receptors and 8 ephrins analyzed, only EphA4 and ephrin A1 gene expression were consistently associated with an improved outcome in patients with lung adenocarcinoma. Expression levels of EphA4 by microarray correlated well with expression levels measured by qPCR and Western blotting. EphA4 overexpression reduced cell migration and invasion but did not affect cell cycle, apoptosis, or drug sensitivity. Surprisingly, EphA4 was expressed at higher levels in cancer compared with non-cancer tissues and cell lines. EphA4 gene expression is associated with an improved outcome in patients with resected lung adenocarcinoma, possibly by affecting cancer cell migration and invasion. Mol Cancer Ther; 11(9); 2021–32. ©2012 AACR.


Clinical Cancer Research | 2016

Epithelial–Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor–Mediated Apoptosis in Non–Small Cell Lung Cancer

Renata Ferrarotto; Ruchitha Goonatilake; Suk-Young Yoo; Pan Tong; Uma Giri; Shaohua Peng; John D. Minna; Luc Girard; Yuehong Wang; Liguang Wang; Lerong Li; Lixia Diao; David H. Peng; Don L. Gibbons; Bonnie S. Glisson; John V. Heymach; Jing Wang; Lauren Averett Byers; Faye M. Johnson

Purpose: To identify new therapeutic targets for non–small cell lung cancer (NSCLC), we systematically searched two cancer cell line databases for sensitivity data on a broad range of drugs. We identified polo-like kinase 1 (PLK1) as the most promising target for further investigation based on a subset of sensitive NSCLC cell lines and inhibitors that were in advanced clinical development. Experimental Design: To identify potential biomarkers of response of NSCLC to PLK1 inhibition and mechanisms of PLK1 inhibitor–induced apoptosis, integrated analysis of gene and protein expression, gene mutations, and drug sensitivity was performed using three PLK1 inhibitors (volasertib, BI2536, and GSK461364) with a large panel of NSCLC cell lines. Results: The NSCLC cell lines had different sensitivities to PLK1 inhibition, with a minority demonstrating sensitivity to all three inhibitors. PLK1 inhibition led to G2–M arrest, but only treatment-sensitive cell lines underwent substantial apoptosis following PLK1 inhibition. NSCLC lines with high epithelial–mesenchymal transition (EMT) gene signature scores (mesenchymal cell lines) were more sensitive to PLK1 inhibition than epithelial lines (P < 0.02). Likewise, proteomic profiling demonstrated that E-cadherin expression was higher in the resistant cell lines than in the sensitive ones (P < 0.01). Induction of an epithelial phenotype by expression of the miRNA miR-200 increased cellular resistance to PLK1 inhibition. Also, KRAS mutation and alterations in the tight-junction, ErbB, and Rho signaling pathways correlated with drug response of NSCLC. Conclusions: In this first reported large-scale integrated analysis of PLK1 inhibitor sensitivity, we demonstrated that EMT leads to PLK1 inhibition sensitivity of NSCLC cells. Our findings have important clinical implications for mesenchymal NSCLC, a significant subtype of the disease that is associated with resistance to currently approved targeted therapies. Clin Cancer Res; 22(7); 1674–86. ©2015 AACR.


Oncotarget | 2016

Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations

Shaohua Peng; Banibrata Sen; Tuhina Mazumdar; Lauren Averett Byers; Lixia Diao; Jing Wang; Pan Tong; Uma Giri; John V. Heymach; Humam Kadara; Faye M. Johnson

Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.


Anti-Cancer Drugs | 2015

Drug-induced RAF dimerization is independent of RAS mutation status and does not lead to universal MEK dependence for cell survival in head and neck cancers

Tuhina Mazumdar; Banibrata Sen; Yifan Wang; Shaohua Peng; Courtney Nicholas; Bonnie S. Glisson; Jeffrey N. Myers; Faye M. Johnson

Treatments for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) have limited efficacy. One potential therapeutic target for HNSCC is the RAS/RAF/MEK/ERK cascade, which is one of the major signaling pathways for HNSCC cell survival. In HNSCC, RAS can be activated either by HRAS mutation or by upstream signaling. The ABL inhibitor nilotinib acts as a weak RAF inhibitor that induces RAF dimerization and subsequent activation of MEK/ERK in other cancer cell lines with activated RAS, leading to an unexpected dependence on MEK/ERK for cell survival. We hypothesized that nilotinib and the MEK inhibitor MEK162 would be synergistic in HNSCC cell lines owing to the frequent activation of RAS. We treated HNSCC cell lines with nilotinib and performed immunoblotting and cell-viability experiments. We used an orthotopic mouse model to assess synergistic effects in vivo. Nilotinib induced significant BRAF-CRAF heterodimerization and ERK activation irrespective of RAS mutation status. In cell-viability assays, nilotinib synergized with MEK162. MEK162 alone induced G1 arrest that was minimally enhanced by nilotinib. In the mouse model, treatment with MEK162 alone or combined with nilotinib led to tumor growth inhibition. In HNSCC, nilotinib-induced RAF dimerization is independent of RAS mutation status, but this dimerization does not lead to MEK dependence for cell survival in all HNSCC cell lines. MEK inhibition alone leads to decreased proliferation both in vitro and in vivo. Although nilotinib has some synergistic effects with MEK162, other agents may be more effective against HNSCC when combined with MEK162.

Collaboration


Dive into the Shaohua Peng's collaboration.

Top Co-Authors

Avatar

Faye M. Johnson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tuhina Mazumdar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Banibrata Sen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey N. Myers

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lauren Averett Byers

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pan Tong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Curtis R. Pickering

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Li Shen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bonnie S. Glisson

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge